Skip to content

PyTorch implementation of RICAP (Random Image Cropping And Patching)

License

Notifications You must be signed in to change notification settings

4uiiurz1/pytorch-ricap

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

9 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

A PyTorch implementation of RICAP

This repository contains code for a data augmentation method RICAP (Random Image Cropping And Patching) based on Data Augmentation using Random Image Cropping and Patching for Deep CNNs implemented in PyTorch.

example

Requirements

  • Python 3.6
  • PyTorch 0.4 or 1.0

Training

CIFAR-10

WideResNet28-10 baseline on CIFAR-10:

python train.py --dataset cifar10

WideResNet28-10 +RICAP on CIFAR-10:

python train.py --dataset cifar10 --ricap True

WideResNet28-10 +Random Erasing on CIFAR-10:

python train.py --dataset cifar10 --random-erase True

WideResNet28-10 +Mixup on CIFAR-10:

python train.py --dataset cifar10 --mixup True

Results

Model Error rate Loss Error rate (paper)
WideResNet28-10 baseline 3.82 0.158 3.89
WideResNet28-10 +RICAP 2.82 0.141 2.85
WideResNet28-10 +Random Erasing 3.18 0.114 4.65
WideResNet28-10 +Mixup 3.02 0.158 3.02

Learning curves of loss and accuracy.

loss

acc

About

PyTorch implementation of RICAP (Random Image Cropping And Patching)

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages