Skip to content

Commit

Permalink
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[Bugfix] Fix OpenAI parallel sampling when using xgrammar (vllm-proje…
Browse files Browse the repository at this point in the history
…ct#11637)

Signed-off-by: mgoin <michael@neuralmagic.com>
mgoin authored and Ubuntu committed Jan 19, 2025
1 parent b8fe6f2 commit 06f2bb0
Showing 4 changed files with 17 additions and 13 deletions.
14 changes: 6 additions & 8 deletions tests/entrypoints/openai/test_completion.py
Original file line number Diff line number Diff line change
@@ -28,6 +28,8 @@
# need to change to match the prompt adapter
PA_NUM_VIRTUAL_TOKENS = 8

GUIDED_DECODING_BACKENDS = ["outlines", "lm-format-enforcer", "xgrammar"]


@pytest.fixture(scope="module")
def zephyr_lora_files():
@@ -635,8 +637,7 @@ async def test_allowed_token_ids(client: openai.AsyncOpenAI):


@pytest.mark.asyncio
@pytest.mark.parametrize("guided_decoding_backend",
["outlines", "lm-format-enforcer"])
@pytest.mark.parametrize("guided_decoding_backend", GUIDED_DECODING_BACKENDS)
async def test_guided_json_completion(client: openai.AsyncOpenAI,
guided_decoding_backend: str,
sample_json_schema):
@@ -658,8 +659,7 @@ async def test_guided_json_completion(client: openai.AsyncOpenAI,


@pytest.mark.asyncio
@pytest.mark.parametrize("guided_decoding_backend",
["outlines", "lm-format-enforcer"])
@pytest.mark.parametrize("guided_decoding_backend", GUIDED_DECODING_BACKENDS)
async def test_guided_regex_completion(client: openai.AsyncOpenAI,
guided_decoding_backend: str,
sample_regex):
@@ -680,8 +680,7 @@ async def test_guided_regex_completion(client: openai.AsyncOpenAI,


@pytest.mark.asyncio
@pytest.mark.parametrize("guided_decoding_backend",
["outlines", "lm-format-enforcer"])
@pytest.mark.parametrize("guided_decoding_backend", GUIDED_DECODING_BACKENDS)
async def test_guided_choice_completion(client: openai.AsyncOpenAI,
guided_decoding_backend: str,
sample_guided_choice):
@@ -761,8 +760,7 @@ async def test_echo_logprob_completion(client: openai.AsyncOpenAI,


@pytest.mark.asyncio
@pytest.mark.parametrize("guided_decoding_backend",
["outlines", "lm-format-enforcer"])
@pytest.mark.parametrize("guided_decoding_backend", GUIDED_DECODING_BACKENDS)
async def test_guided_decoding_type_error(client: openai.AsyncOpenAI,
guided_decoding_backend: str,
sample_json_schema, sample_regex):
5 changes: 5 additions & 0 deletions vllm/model_executor/guided_decoding/xgrammar_decoding.py
Original file line number Diff line number Diff line change
@@ -1,6 +1,7 @@
# noqa: UP007
from __future__ import annotations

import copy
import json
from dataclasses import dataclass, field
from typing import TYPE_CHECKING, Any
@@ -309,3 +310,7 @@ def __call__(self, input_ids: list[int],
scores = scores.to(device_type).squeeze()

return scores

def clone(self) -> XGrammarLogitsProcessor:
"""Deepcopy due to per-sequence state in the matchers"""
return copy.deepcopy(self)
9 changes: 5 additions & 4 deletions vllm/sampling_params.py
Original file line number Diff line number Diff line change
@@ -450,15 +450,16 @@ def all_stop_token_ids(self) -> Set[int]:
return self._all_stop_token_ids

def clone(self) -> "SamplingParams":
"""Deep copy excluding LogitsProcessor objects.
"""Deep copy, but maybe not the LogitsProcessor objects.
LogitsProcessor objects are excluded because they may contain an
arbitrary, nontrivial amount of data.
LogitsProcessor objects may contain an arbitrary, nontrivial amount of
data that is expensive to copy. However, if not copied, the processor
needs to support parallel decoding for multiple sequences
See https://github.com/vllm-project/vllm/issues/3087
"""

logit_processor_refs = None if self.logits_processors is None else {
id(lp): lp
id(lp): lp.clone() if hasattr(lp, 'clone') else lp
for lp in self.logits_processors
}
return copy.deepcopy(self, memo=logit_processor_refs)
2 changes: 1 addition & 1 deletion vllm/sequence.py
Original file line number Diff line number Diff line change
@@ -1372,7 +1372,7 @@ class ParallelSampleSequenceGroup(SequenceGroupBase):
@staticmethod
def add_request(request_id: str, engine, params, **kwargs):
original_params = params
params = copy.deepcopy(original_params)
params = original_params.clone()
params.n = 1
group = ParallelSampleSequenceGroup(request_id)
seqs = []

0 comments on commit 06f2bb0

Please sign in to comment.