Skip to content

Commit

Permalink
Merge pull request #81 from Anush008/qdrant
Browse files Browse the repository at this point in the history
feat: Qdrant support
  • Loading branch information
cvauclair authored Nov 4, 2024
2 parents 0c561a5 + 7cce574 commit bdfe1ba
Show file tree
Hide file tree
Showing 9 changed files with 523 additions and 22 deletions.
300 changes: 284 additions & 16 deletions Cargo.lock

Large diffs are not rendered by default.

5 changes: 1 addition & 4 deletions Cargo.toml
Original file line number Diff line number Diff line change
@@ -1,6 +1,3 @@
[workspace]
resolver = "2"
members = [
"rig-core", "rig-lancedb",
"rig-mongodb",
]
members = ["rig-core", "rig-lancedb", "rig-mongodb", "rig-qdrant"]
1 change: 0 additions & 1 deletion rig-core/examples/vector_search.rs
Original file line number Diff line number Diff line change
Expand Up @@ -36,7 +36,6 @@ async fn main() -> Result<(), anyhow::Error> {
.top_n_ids("What is a linglingdong?", 1)
.await?
.into_iter()
.map(|(score, id)| (score, id))
.collect::<Vec<_>>();

println!("ID results: {:?}", id_results);
Expand Down
1 change: 0 additions & 1 deletion rig-mongodb/examples/vector_search_mongodb.rs
Original file line number Diff line number Diff line change
Expand Up @@ -65,7 +65,6 @@ async fn main() -> Result<(), anyhow::Error> {
.top_n_ids("What is a linglingdong?", 1)
.await?
.into_iter()
.map(|(score, id)| (score, id))
.collect::<Vec<_>>();

println!("ID results: {:?}", id_results);
Expand Down
18 changes: 18 additions & 0 deletions rig-qdrant/Cargo.toml
Original file line number Diff line number Diff line change
@@ -0,0 +1,18 @@
[package]
name = "rig-qdrant"
version = "0.1.0"
edition = "2021"
license = "MIT"
readme = "README.md"
description = "Rig vector store index integration for Qdrant. https://qdrant.tech"
repository = "https://github.com/0xPlaygrounds/rig"

[dependencies]
rig-core = { path = "../rig-core", version = "0.3.0" }
serde_json = "1.0.128"
serde = "1.0.210"
qdrant-client = "1.12.1"

[dev-dependencies]
tokio = { version = "1.40.0", features = ["rt-multi-thread"] }
anyhow = "1.0.89"
7 changes: 7 additions & 0 deletions rig-qdrant/LICENSE
Original file line number Diff line number Diff line change
@@ -0,0 +1,7 @@
Copyright (c) 2024, Playgrounds Analytics Inc.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
5 changes: 5 additions & 0 deletions rig-qdrant/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,5 @@
# Rig-Qdrant

Vector store index integration for [Qdrant](https://qdrant.tech/). This integration supports dense vector retrieval using Rig's embedding providers. It is also extensible to allow all [hybrid queries](https://qdrant.tech/documentation/concepts/hybrid-queries/) supported by Qdrant.

You can find end-to-end examples [here](https://github.com/0xPlaygrounds/rig/tree/main/rig-qdrant/examples).
85 changes: 85 additions & 0 deletions rig-qdrant/examples/qdrant_vector_search.rs
Original file line number Diff line number Diff line change
@@ -0,0 +1,85 @@
// To run this example:
//
// export OPENAI_API_KEY=<YOUR-API-KEY>
// docker run -p 6333:6333 -p 6334:6334 qdrant/qdrant
// cargo run --release --example qdrant_vector_search
//
// You can view the data at http://localhost:6333/dashboard

use std::env;

use qdrant_client::{
qdrant::{
CreateCollectionBuilder, Distance, PointStruct, QueryPointsBuilder, UpsertPointsBuilder,
VectorParamsBuilder,
},
Payload, Qdrant,
};
use rig::{
embeddings::EmbeddingsBuilder,
providers::openai::{Client, TEXT_EMBEDDING_ADA_002},
vector_store::VectorStoreIndex,
};
use rig_qdrant::QdrantVectorStore;
use serde_json::json;

#[tokio::main]
async fn main() -> Result<(), anyhow::Error> {
const COLLECTION_NAME: &str = "rig-collection";

let client = Qdrant::from_url("http://localhost:6334").build()?;

// Create a collection with 1536 dimensions if it doesn't exist
if !client.collection_exists(COLLECTION_NAME).await? {
client
.create_collection(
CreateCollectionBuilder::new(COLLECTION_NAME)
.vectors_config(VectorParamsBuilder::new(1536, Distance::Cosine)),
)
.await?;
}

// Initialize OpenAI client.
// Get your API key from https://platform.openai.com/api-keys
let openai_api_key = env::var("OPENAI_API_KEY").expect("OPENAI_API_KEY not set");
let openai_client = Client::new(&openai_api_key);

let model = openai_client.embedding_model(TEXT_EMBEDDING_ADA_002);

let documents = EmbeddingsBuilder::new(model.clone())
.simple_document("0981d983-a5f8-49eb-89ea-f7d3b2196d2e", "Definition of a *flurbo*: A flurbo is a green alien that lives on cold planets")
.simple_document("62a36d43-80b6-4fd6-990c-f75bb02287d1", "Definition of a *glarb-glarb*: A glarb-glarb is a ancient tool used by the ancestors of the inhabitants of planet Jiro to farm the land.")
.simple_document("f9e17d59-32e5-440c-be02-b2759a654824", "Definition of a *linglingdong*: A term used by inhabitants of the far side of the moon to describe humans.")
.build()
.await?;

let points: Vec<PointStruct> = documents
.into_iter()
.map(|d| {
let vec: Vec<f32> = d.embeddings[0].vec.iter().map(|&x| x as f32).collect();
PointStruct::new(
d.id,
vec,
Payload::try_from(json!({
"document": d.document,
}))
.unwrap(),
)
})
.collect();

client
.upsert_points(UpsertPointsBuilder::new(COLLECTION_NAME, points))
.await?;

let query_params = QueryPointsBuilder::new(COLLECTION_NAME).with_payload(true);
let vector_store = QdrantVectorStore::new(client, model, query_params.build());

let results = vector_store
.top_n::<serde_json::Value>("What is a linglingdong?", 1)
.await?;

println!("Results: {:?}", results);

Ok(())
}
123 changes: 123 additions & 0 deletions rig-qdrant/src/lib.rs
Original file line number Diff line number Diff line change
@@ -0,0 +1,123 @@
use qdrant_client::{
qdrant::{point_id::PointIdOptions, PointId, Query, QueryPoints},
Qdrant,
};
use rig::{
embeddings::EmbeddingModel,
vector_store::{VectorStoreError, VectorStoreIndex},
};
use serde::Deserialize;

/// Represents a vector store implementation using Qdrant - <https://qdrant.tech/> as the backend.
pub struct QdrantVectorStore<M: EmbeddingModel> {
/// Model used to generate embeddings for the vector store
model: M,
/// Client instance for Qdrant server communication
client: Qdrant,
/// Default search parameters
query_params: QueryPoints,
}

impl<M: EmbeddingModel> QdrantVectorStore<M> {
/// Creates a new instance of QdrantVectorStore.
///
/// # Arguments
/// * `client` - Qdrant client instance
/// * `model` - Embedding model instance
/// * `query_params` - Search parameters for vector queries
/// Reference: <https://api.qdrant.tech/v-1-12-x/api-reference/search/query-points>
pub fn new(client: Qdrant, model: M, query_params: QueryPoints) -> Self {
Self {
client,
model,
query_params,
}
}

async fn generate_query_vector(&self, query: &str) -> Result<Vec<f32>, VectorStoreError> {
let embedding = self.model.embed_document(query).await?;
Ok(embedding.vec.iter().map(|&x| x as f32).collect())
}

fn prepare_query_params(&self, query: Option<Query>, limit: usize) -> QueryPoints {
let mut params = self.query_params.clone();
params.query = query;
params.limit = Some(limit as u64);
params
}
}

/// Converts a PointId to its string representation.
fn stringify_id(id: PointId) -> Result<String, VectorStoreError> {
match id.point_id_options {
Some(PointIdOptions::Num(num)) => Ok(num.to_string()),
Some(PointIdOptions::Uuid(uuid)) => Ok(uuid.to_string()),
None => Err(VectorStoreError::DatastoreError(
"Invalid point ID format".into(),
)),
}
}

impl<M: EmbeddingModel + std::marker::Sync + Send> VectorStoreIndex for QdrantVectorStore<M> {
async fn top_n<T: for<'a> Deserialize<'a> + Send>(
&self,
query: &str,
n: usize,
) -> Result<Vec<(f64, String, T)>, VectorStoreError> {
let query = match self.query_params.query {
Some(ref q) => Some(q.clone()),
None => Some(Query::new_nearest(self.generate_query_vector(query).await?)),
};

let params = self.prepare_query_params(query, n);
let result = self
.client
.query(params)
.await
.map_err(|e| VectorStoreError::DatastoreError(Box::new(e)))?;

result
.result
.into_iter()
.map(|item| {
let id =
stringify_id(item.id.ok_or_else(|| {
VectorStoreError::DatastoreError("Missing point ID".into())
})?)?;
let score = item.score as f64;
let payload = serde_json::from_value(serde_json::to_value(item.payload)?)?;
Ok((score, id, payload))
})
.collect()
}

async fn top_n_ids(
&self,
query: &str,
n: usize,
) -> Result<Vec<(f64, String)>, VectorStoreError> {
let query = match self.query_params.query {
Some(ref q) => Some(q.clone()),
None => Some(Query::new_nearest(self.generate_query_vector(query).await?)),
};

let params = self.prepare_query_params(query, n);
let points = self
.client
.query(params)
.await
.map_err(|e| VectorStoreError::DatastoreError(Box::new(e)))?
.result;

points
.into_iter()
.map(|point| {
let id =
stringify_id(point.id.ok_or_else(|| {
VectorStoreError::DatastoreError("Missing point ID".into())
})?)?;
Ok((point.score as f64, id))
})
.collect()
}
}

0 comments on commit bdfe1ba

Please sign in to comment.