-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathE2euiqa.py
102 lines (85 loc) · 3.14 KB
/
E2euiqa.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
import torch
import torch.nn as nn
# import torch.nn.functional as F
from torch.nn import init
from Gdn import Gdn2d, Gdn1d
from Pool import GlobalAvgPool2d
from Spp import SpatialPyramidPooling2d
def weights_init(m):
classname = m.__class__.__name__
if classname.find('Conv') != -1:
init.xavier_uniform_(m.weight.data)
elif classname.find('Gdn2d') != -1:
init.eye_(m.gamma.data)
init.constant_(m.beta.data, 1e-4)
elif classname.find('Gdn1d') != -1:
init.eye_(m.gamma.data)
init.constant_(m.beta.data, 1e-4)
# def build_net(norm=Gdn, layer=5, width=24):
# layers = [
# nn.Conv2d(3, width, kernel_size=3, stride=1, padding=1, dilation=1, bias=True),
# norm(width)
# ]
#
# for l in range(1, layer):
# layers += [nn.Conv2d(width, width, kernel_size=3, stride=1, padding=2**l, dilation=2**l, bias=True),
# norm(width)
# ]
#
# layers += [
# nn.Conv2d(width, width, kernel_size=3, stride=1, padding=1, dilation=1, bias=True),
# norm(width),
# nn.Conv2d(width, 2, kernel_size=1, stride=1, padding=0, dilation=1, bias=True)
# ]
#
# net = nn.Sequential(*layers)
# net.apply(weights_init)
#
# return net
def build_model(normc=Gdn2d, normf=Gdn1d, layer=3, width=48):
layers = [
nn.Conv2d(3, width, kernel_size=3, stride=1, padding=1, dilation=1, bias=True),
normc(width),
# nn.Conv2d(width, width, kernel_size=3, stride=1, padding=1, dilation=1, bias=True),
# normc(width),
# nn.AvgPool2d(kernel_size=2)
nn.MaxPool2d(kernel_size=2)
]
for l in range(1, layer):
layers += [nn.Conv2d(width, width, kernel_size=3, stride=1, padding=1, dilation=1, bias=True),
normc(width),
# nn.Conv2d(width, width, kernel_size=3, stride=1, padding=1, dilation=1, bias=True),
# normc(width),
# nn.AvgPool2d(kernel_size=2)
nn.MaxPool2d(kernel_size=2)
]
layers += [nn.Conv2d(width, width, kernel_size=3, stride=1, padding=1, dilation=1, bias=True),
normc(width),
#GlobalAvgPool2d()
# SpatialPyramidPooling2d()
SpatialPyramidPooling2d(pool_type='max_pool')
]
layers += [nn.Linear(width*14, 128, bias=True),
# normf(width),
nn.ReLU(),
# nn.Linear(128, 128, bias=True),
# nn.ReLU(),
nn.Linear(128, 2, bias=True)
]
net = nn.Sequential(*layers)
net.apply(weights_init)
return net
class E2EUIQA(nn.Module):
# end-to-end unsupervised image quality assessment model
def __init__(self):
super(E2EUIQA, self).__init__()
self.cnn = build_model()
#self.fc = nn.Linear(48, 2, bias=True)
def forward(self, x):
r = self.cnn(x)
#r = self.fc(r)
mean = r[:, 0].unsqueeze(dim=-1)
var = torch.exp(r[:, 1]).unsqueeze(dim=-1)
return mean, var
def init_model(self, path):
self.cnn.load_state_dict(torch.load(path))