-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathmain.py
249 lines (221 loc) · 11.9 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
import argparse
import time
import numpy as np
import torch
import torch.nn as nn
import dgl
import dgl.function as fn
import torch.nn.functional as F
from torch.nn.parameter import Parameter
import math
import uuid
import random
import uuid
import gc
from load_dataset import prepare_data
from utils import gen_output_torch, set_seed, train, train_rlu, test, gen_model_rlu, gen_model, gen_model_mag_rlu, gen_model_mag
def get_n_params(model):
pp = 0
for p in list(model.parameters()):
nn = 1
for s in list(p.size()):
nn = nn*s
pp += nn
return pp
def run(args, device):
checkpt_file = f"./output/{args.dataset}/"+uuid.uuid4().hex
for stage, epochs in enumerate(args.stages):
if stage > 0 and args.use_rlu:
predict_prob= torch.load(checkpt_file+'_{}.pt'.format(stage-1))/args.temp
predict_prob = predict_prob.softmax(dim=1)
train_node_nums=len(train_nid)
valid_node_nums=len(val_nid)
test_node_nums=len(test_nid)
total_num_nodes=train_node_nums+valid_node_nums+test_node_nums
print("This history model Train ACC is {}".format(evaluator(labels[:train_node_nums],predict_prob[:train_node_nums].argmax(dim=-1, keepdim=True).cpu())))
print("This history model Valid ACC is {}".format(evaluator(labels[train_node_nums:train_node_nums+valid_node_nums],predict_prob[train_node_nums:train_node_nums+valid_node_nums].argmax(dim=-1, keepdim=True).cpu())))
print("This history model Test ACC is {}".format(evaluator(labels[train_node_nums+valid_node_nums:train_node_nums+valid_node_nums+test_node_nums],predict_prob[train_node_nums+valid_node_nums:train_node_nums+valid_node_nums+test_node_nums].argmax(dim=-1, keepdim=True).cpu())))
confident_nid = torch.arange(len(predict_prob))[
predict_prob.max(1)[0] > args.threshold]
extra_confident_nid = confident_nid[confident_nid >= len(
train_nid)]
print(f'Stage: {stage}, confident nodes: {len(extra_confident_nid)}')
enhance_idx = extra_confident_nid
if len(extra_confident_nid) > 0:
enhance_loader = torch.utils.data.DataLoader(
enhance_idx, batch_size=int(args.batch_size*len(enhance_idx)/(len(enhance_idx)+len(train_nid))), shuffle=True, drop_last=False)
gc.collect()
teacher_probs = torch.zeros(predict_prob.shape[0], predict_prob.shape[1])
teacher_probs[enhance_idx,:] = predict_prob[enhance_idx,:]
else:
teacher_probs = None
with torch.no_grad():
data = prepare_data(device, args, teacher_probs)
feats, labels, in_size, num_classes, \
train_nid, val_nid, test_nid, evaluator,label_emb = data
if stage == 0:
train_loader = torch.utils.data.DataLoader(
torch.arange(len(train_nid)), batch_size=args.batch_size, shuffle=True, drop_last=False)
else:
train_loader = torch.utils.data.DataLoader(torch.arange(len(train_nid)), batch_size=int(args.batch_size*len(train_nid)/(len(enhance_idx)+len(train_nid))), shuffle=True, drop_last=False)
val_loader = torch.utils.data.DataLoader(
torch.arange(len(train_nid),len(train_nid)+len(val_nid)), batch_size=args.batch_size, shuffle=False, drop_last=False)
test_loader = torch.utils.data.DataLoader(
torch.arange(len(train_nid)+len(val_nid),len(train_nid)+len(val_nid)+len(test_nid)), batch_size=args.batch_size,
shuffle=False, drop_last=False)
all_loader = torch.utils.data.DataLoader(
torch.arange(len(train_nid)+len(val_nid)+len(test_nid)), batch_size=args.batch_size,
shuffle=False, drop_last=False)
train_node_nums = len(train_nid)
valid_node_nums = len(val_nid)
test_node_nums = len(test_nid)
total_num_nodes = len(train_nid) + len(val_nid) + len(test_nid)
#num_hops = args.num_hops + 1
if args.use_rlu == False:
print("not use rlu")
if args.dataset == "ogbn-mag":
_, num_feats, in_feats = feats[0].shape
model = gen_model_mag(args, num_feats, in_feats, num_classes)
else:
model = gen_model(args, in_size, num_classes)
else:
print("use rlu")
if args.dataset == "ogbn-mag":
_, num_feats, in_feats = feats[0].shape
model = gen_model_mag_rlu(args, num_feats, in_feats, num_classes)
else:
model = gen_model_rlu(args, in_size, num_classes)
print(model)
model = model.to(device)
print("# Params:", get_n_params(model))
loss_fcn = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr,
weight_decay=args.weight_decay)
# Start training
best_epoch = 0
best_val = 0
best_test = 0
count = 0
for epoch in range(epochs):
gc.collect()
start = time.time()
if stage == 0:
loss,acc=train(model, feats, labels, loss_fcn, optimizer, train_loader, label_emb,evaluator)
elif stage == 1:
loss,acc=train_rlu(model, train_loader, enhance_loader, optimizer, evaluator, device, feats, labels, label_emb, predict_prob,args.gama)
else:
loss,acc=train_rlu(model, train_loader, enhance_loader, optimizer, evaluator, device, feats, labels, label_emb, predict_prob,args.gama)
end = time.time()
log = "Epoch {}, Time(s): {:.4f},Train loss: {:.4f}, Train acc: {:.4f} ".format(epoch, end - start,loss,acc*100)
if epoch % args.eval_every == 0 and epoch > args.train_num_epochs[stage]:
with torch.no_grad():
acc = test(model, feats, labels, val_loader, evaluator,
label_emb)
end = time.time()
log += "Epoch {}, Time(s): {:.4f}, ".format(epoch, end - start)
log += "Val {:.4f}, ".format(acc)
if acc > best_val:
best_epoch = epoch
best_val = acc
best_test = test(model, feats, labels, test_loader, evaluator,
label_emb)
torch.save(model.state_dict(),checkpt_file+f'_{stage}.pkl')
count = 0
else:
count = count+args.eval_every
if count >= args.patience:
break
log += "Best Epoch {},Val {:.4f}, Test {:.4f}".format(
best_epoch, best_val, best_test)
print(log)
print("Best Epoch {}, Val {:.4f}, Test {:.4f}".format(
best_epoch, best_val, best_test))
model.load_state_dict(torch.load(checkpt_file+f'_{stage}.pkl'))
preds = gen_output_torch(model, feats, all_loader, labels.device, label_emb)
torch.save(preds, checkpt_file+f'_{stage}.pt')
return best_val, best_test, preds
def main(args):
if args.gpu < 0:
device = "cpu"
else:
device = "cuda:{}".format(args.gpu)
val_accs = []
test_accs = []
for i in range(args.num_runs):
print(f"Run {i} start training")
set_seed(args.seed+i)
best_val, best_test, preds = run(args, device)
np.save(f"output/{args.dataset}/output_{i}.npy", preds.numpy())
val_accs.append(best_val)
test_accs.append(best_test)
print(f"Average val accuracy: {np.mean(val_accs):.4f}, "
f"std: {np.std(val_accs):.4f}")
print(f"Average test accuracy: {np.mean(test_accs):.4f}, "
f"std: {np.std(test_accs):.4f}")
return np.mean(test_accs)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="GMLP")
parser.add_argument("--hidden", type=int, default=512)
parser.add_argument("--num-hops", type=int, default=5,
help="number of hops")
parser.add_argument("--label-num-hops",type=int,default=9,
help="number of hops for label")
parser.add_argument("--seed", type=int, default=0,
help="the seed used in the training")
parser.add_argument("--lr", type=float, default=0.001)
parser.add_argument("--dataset", type=str, default="ogbn-products")
parser.add_argument("--dropout", type=float, default=0.5,
help="dropout on activation")
parser.add_argument("--gpu", type=int, default=3)
parser.add_argument("--weight-decay", type=float, default=0)
parser.add_argument("--eval-every", type=int, default=1)
parser.add_argument("--batch-size", type=int, default=10000)
parser.add_argument("--n-layers-1", type=int, default=4,
help="number of feed-forward layers")
parser.add_argument("--n-layers-2", type=int, default=4,
help="number of feed-forward layers")
parser.add_argument("--n-layers-3", type=int, default=4,
help="number of feed-forward layers")
parser.add_argument("--num-runs", type=int, default=10,
help="number of times to repeat the experiment")
parser.add_argument("--patience", type=int, default=100,
help="early stop of times of the experiment")
parser.add_argument("--alpha", type=float, default=0.5,
help="initial residual parameter for the model")
parser.add_argument("--temp", type=float, default=1,
help="temperature of the output prediction")
parser.add_argument("--threshold", type=float, default=0.8,
help="the threshold for the node to be added into the model")
parser.add_argument("--input-drop", type=float, default=0,
help="input dropout of input features")
parser.add_argument("--att-drop", type=float, default=0.5,
help="attention dropout of model")
parser.add_argument("--label-drop", type=float, default=0.5,
help="label feature dropout of model")
parser.add_argument("--gama", type=float, default=0.5,
help="parameter for the KL loss")
parser.add_argument("--pre-process", action='store_true', default=False,
help="whether to process the input features")
parser.add_argument("--residual", action='store_true', default=False,
help="whether to connect the input features")
parser.add_argument("--act", type=str, default="relu",
help="the activation function of the model")
parser.add_argument("--method", type=str, default="JK_GAMLP",
help="the model to use")
parser.add_argument("--use-emb", type=str)
parser.add_argument("--root", type=str, default='/data4/zwt/')
parser.add_argument("--emb_path", type=str, default='/data4/zwt/NARS-main')
parser.add_argument("--use-relation-subsets", type=str, default='/data4/zwt/NARS-main/sample_relation_subsets/examples/mag')
parser.add_argument("--use-rlu", action='store_true', default=False,
help="whether to use the reliable data distillation")
parser.add_argument("--train-num-epochs", nargs='+',type=int, default=[100, 100],
help="The Train epoch setting for each stage.")
parser.add_argument("--stages", nargs='+',type=int, default=[300, 300],
help="The epoch setting for each stage.")
parser.add_argument("--pre-dropout", action='store_true', default=False,
help="whether to process the input features")
parser.add_argument("--bns", action='store_true', default=False,
help="whether to process the input features")
args = parser.parse_args()
print(args)
main(args)