Skip to content

Latest commit

 

History

History
372 lines (307 loc) · 13.3 KB

README.md

File metadata and controls

372 lines (307 loc) · 13.3 KB

FastASR

这是一个用C++实现ASR推理的项目,它依赖很少,安装也很简单,推理速度很快,在树莓派4B等ARM平台也可以流畅的运行。 推理模型是基于目前最先进的conformer模型,使用10000+小时的wenetspeech数据集训练得到, 所以识别效果也很好,可以媲美许多商用的ASR软件。

项目简介

目前本项目实现了3个模型,它们是PaddleSpeech r1.01版本中conformer_wenetspeech-zh-16k和conformer_online_wenetspeech-zh-16k ,以及kaidi2的rnnt2。

  • 非流式模型:每次识别是以句子为单位,所以实时性会差一些,但准确率会高一些。
  • 流式模型:每次识别是以句子为单位,所以实时性会差一些,但准确率会高一些。

k2_rnnt2和conformer_wenetspeech-zh-16k是属于非流式模型, conformer_online_wenetspeech-zh-16k属于流式模型。

上面提到的这些模型都是基于深度学习框架(paddlepaddle或pytorch)实现的, 本身的性能已经很不错了,即使在没有GPU的个人电脑上运行, 也能满足实时性的要求(如:时长为10s的语音,推理时间小于10s,即可满足实时性)。

但是要把深度学习模型部署在ARM平台,会遇到两个方面的困难。

  • 不容易安装,需要自己编译一些组件。
  • 执行效率很慢,无法满足实时性的要求。

因此就有这个项目,它由纯C++编写,仅实现了模型的推理过程。

  • 语言优势: 由于C++和Python不同,是编译型语言,编译器会根据编译选项针对不同平台的CPU进行优化,更适合在不同CPU平台上面部署,充分利用CPU的计算资源。
  • 独立: 实现不依赖于现有的深度学习框架如pytorch、paddle、tensorflow等。
  • 依赖少: 项目仅使用了两个第三方库libfftw3和libopenblas,并无其他依赖,所以在各个平台的可移植行很好,通用性很强。
  • 效率高:算法中大量使用指针,减少原有算法中reshape和permute的操作,减少不必要的数据拷贝,从而提升算法性能。

本项目最终生成的是动态库libfastasr.so和静态库libfastasr.a文件,方便用户的调用。 在examples目录下是C++和C调用库的例子,以供用户参考。

未完成工作

  • 量化和压缩模型
  • 支持python接口调用
  • 根据流式模型增加一些例子
  • 将来会支持Windows平台和MacOS平台

快速上手

Ubuntu 安装依赖

安装依赖库libfftw3

sudo apt-get install libfftw3-dev libfftw3-single3

安装依赖库libopenblas

sudo apt-get install libopenblas-dev

MacOS 安装依赖

安装依赖库fftw

sudo brew install fftw

安装依赖库openblas

sudo brew install openblas

编译源码

Build for Linux

下载最新版的源码

git clone https://github.com/chenkui164/FastASR.git

编译最新版的源码

cd FastASR/
mkdir build
cd build
cmake ..
make

Build for Windows

Windows编译指南

使用Visual studio 2022 打开cmakelist.txt 编译即可。 需要在vs2022安装linux开发组件。

下载预训练模型

k2_rnnt2预训练模型下载

进入FastASR/k2_rnnt2_cli文件夹,用于存放下载的预训练模型.

cd ../k2_rnnt2_cli

从huggingface官网下载预训练模型,预训练模型所在的仓库地址 也可通过命令一键下载。

wget -c https://huggingface.co/luomingshuang/icefall_asr_wenetspeech_pruned_transducer_stateless2/resolve/main/exp/pretrained_epoch_10_avg_2.pt

将用于Python的模型转换为C++的,这样更方便通过内存映射的方式直接读取参数,加快模型读取速度。

../scripts/k2_rnnt2_convert.py pretrained_epoch_10_avg_2.pt

查看转换后的参数文件wenet_params.bin的md5码,md5码为33a941f3c1a20a5adfb6f18006c11513,表示转换正确。

md5sum -b wenet_params.bin

conformer_wenetspeech-zh-16k预训练模型下载

进入FastASR/paddlespeech_cli文件夹,用于存放下载的预训练模型.

cd ../paddlespeech_cli

从PaddleSpeech官网下载预训练模型,如果之前已经在运行过PaddleSpeech, 则可以不用下载,它已经在目录~/.paddlespeech/models/conformer_wenetspeech-zh-16k中。

wget -c https://paddlespeech.bj.bcebos.com/s2t/wenetspeech/asr1_conformer_wenetspeech_ckpt_0.1.1.model.tar.gz

将压缩包解压wenetspeech目录下

mkdir wenetspeech
tar -xzvf asr1_conformer_wenetspeech_ckpt_0.1.1.model.tar.gz -C wenetspeech

将用于Python的模型转换为C++的,这样更方便通过内存映射的方式直接读取参数,加快模型读取速度。

../scripts/paddlespeech_convert.py wenetspeech/exp/conformer/checkpoints/wenetspeech.pdparams

查看转换后的参数文件wenet_params.bin的md5码,md5码为9cfcf11ee70cb9423528b1f66a87eafd,表示转换正确。

md5sum -b wenet_params.bin

流模式预训练模型下载

进入FastASR/paddlespeech_stream文件夹,用于存放下载的预训练模型.

cd ../paddlespeech_stream

从PaddleSpeech官网下载预训练模型,如果之前已经在运行过PaddleSpeech, 则可以不用下载,它已经在目录~/.paddlespeech/models/conformer_online_wenetspeech-zh-16k中。

wget -c https://paddlespeech.bj.bcebos.com/s2t/wenetspeech/asr1/asr1_chunk_conformer_wenetspeech_ckpt_1.0.0a.model.tar.gz

将压缩包解压wenetspeech目录下

mkdir wenetspeech
tar -xzvf asr1_chunk_conformer_wenetspeech_ckpt_1.0.0a.model.tar.gz -C wenetspeech

将用于Python的模型转换为C++的,这样更方便通过内存映射的方式直接读取参数,加快模型读取速度。

../scripts/paddlespeech_convert.py wenetspeech/exp/chunk_conformer/checkpoints/avg_10.pdparams

查看转换后的参数文件wenet_params.bin的md5码,md5码为367a285d43442ecfd9c9e5f5e1145b84,表示转换正确。

md5sum -b wenet_params.bin

测试例子

进入项目的根目录FastASR下载用于测试的wav文件

wget -c https://paddlespeech.bj.bcebos.com/PaddleAudio/zh.wav 

k2_rnnt2模型测试

第一个参数为预训练模型存放的目录; 第二个参数为需要识别的语音文件。

./build/examples/k2_rnnt2_cli k2_rnnt2_cli/ zh.wav

程序输出

Audio time is 5.015000 s. len is 80240
Model initialization takes 0.211781s
result: "我认为跑步最重要的就是给我带来了身体健康"
Model inference takes 0.570641s.

conformer_wenetspeech-zh-16k模型测试

第一个参数为预训练模型存放的目录; 第二个参数为需要识别的语音文件。

./build/examples/paddlespeech_cli paddlespeech_cli/ zh.wav

程序输出

Audio time is 4.996812 s.
Model initialization takes 0.217759s
result: "我认为跑步最重要的就是给我带来了身体健康"
Model inference takes 1.101319s.

conformer_online_wenetspeech-zh-16k模型测试

第一个参数为预训练模型存放的目录; 第二个参数为需要识别的语音文件。

./build/examples/paddlespeech_stream paddlespeech_stream/ zh.wav

程序输出

Model initialization takes 0.222937s
current result: ""
current result: ""
current result: ""
current result: ""
current result: ""
current result: ""
current result: ""
current result: ""
current result: ""
current result: ""
current result: ""
current result: ""
current result: ""
current result: ""
current result: ""
current result: "我认为跑"
current result: "我认为跑"
current result: "我认为跑"
current result: "我认为跑"
current result: "我认为跑"
current result: "我认为跑"
current result: "我认为跑"
current result: "我认为跑"
current result: "我认为跑步最重要的"
current result: "我认为跑步最重要的"
current result: "我认为跑步最重要的"
current result: "我认为跑步最重要的"
current result: "我认为跑步最重要的"
current result: "我认为跑步最重要的"
current result: "我认为跑步最重要的"
current result: "我认为跑步最重要的就是"
current result: "我认为跑步最重要的就是"
current result: "我认为跑步最重要的就是"
current result: "我认为跑步最重要的就是"
current result: "我认为跑步最重要的就是"
current result: "我认为跑步最重要的就是"
current result: "我认为跑步最重要的就是"
current result: "我认为跑步最重要的就是"
current result: "我认为跑步最重要的就是给我"
current result: "我认为跑步最重要的就是给我"
current result: "我认为跑步最重要的就是给我"
current result: "我认为跑步最重要的就是给我"
current result: "我认为跑步最重要的就是给我"
current result: "我认为跑步最重要的就是给我"
current result: "我认为跑步最重要的就是给我"
current result: "我认为跑步最重要的就是给我带来了"
current result: "我认为跑步最重要的就是给我带来了"
current result: "我认为跑步最重要的就是给我带来了"
current result: "我认为跑步最重要的就是给我带来了"
current result: "我认为跑步最重要的就是给我带来了"
current result: "我认为跑步最重要的就是给我带来了"
current result: "我认为跑步最重要的就是给我带来了"
current result: "我认为跑步最重要的就是给我带来了"
current result: "我认为跑步最重要的就是给我带来了身体健康"
current result: "我认为跑步最重要的就是给我带来了身体健康"
current result: "我认为跑步最重要的就是给我带来了身体健康"
current result: "我认为跑步最重要的就是给我带来了身体健康"
current result: "我认为跑步最重要的就是给我带来了身体健康"
current result: "我认为跑步最重要的就是给我带来了身体健康"
final result: "我认为跑步最重要的就是给我带来了身体健康"
Model inference takes 1.657996s.

树莓派4B上优化部署

由于深度学习推理过程,属于计算密集型算法,所以CPU的指令集对代码的执行效率会有重要影响。 从纯数值计算角度来看,64bit的指令及要比32bit的指令集执行效率要提升1倍。 经过测试同样的算法在64bit系统上,确实是要比32bit系统上,执行效率高很多。

为树莓派升级64位系统raspios

树莓派官网下载最新的raspios 64位系统, 我下载的是没有桌面的精简版raspios_lite_arm64, 当然也可以下载有桌面的版本raspios_arm64, 两者没有太大差别,全凭个人喜好。

下载完成镜像,然后烧写SD卡,保证系统新做的系统能正常启动即可。

重新编译依赖库

尽管两个依赖库fftw3和openblas都是可以通过sudo apt install直接安装的, 但是软件源上的版本是通用版本,是兼容树莓派3B等老版本的型号, 并没有针对树莓派4B的ARM CORTEX A72进行优化,所以执行效率并不高。 因此我们需要针对树莓派4B重新编译,让其发挥最大效率。

注意:以下编译安装步骤都是在树莓派上完成,不使用交叉编译!!!

安装fftw3

下载源码

wget -c http://www.fftw.org/fftw-3.3.10.tar.gz

解压

tar -xzvf fftw-3.3.10.tar.gz 
cd fftw-3.3.10/

配置工程,根据CPU选择适当的编译选项

./configure --enable-shared --enable-float --prefix=/usr

编译和安装

make -j4
sudo make install

安装OpenBLAS

下载源码

wget -c https://github.com/xianyi/OpenBLAS/releases/download/v0.3.20/OpenBLAS-0.3.20.tar.gz

解压

tar -xzvf OpenBLAS-0.3.20.tar.gz  
cd OpenBLAS-0.3.20

编译和安装

make -j4
sudo make PREFIX=/usr install

编译和测试

编译和下载预训练模型的过程,请参考上文的 快速上手章节。

运行程序

./build/examples/k2_rnnt2_cli k2_rnnt2_cli/ zh.wav

结果

Audio time is 4.996812 s.
Model initialization takes 10.288784s
result: "我认为跑步最重要的就是给我带来了身体健康"
Model inference takes 4.900788s.

当第一次运行时,发现模型初始化时间就用了10.2s, 显然不太合理,这是因为预训练模型是在SD卡中,一个450M大小的文件从SD卡读到内存中,主要受限于SD卡的读取速度,所以比较慢。 得利于linux的缓存机制,第二次运行时,模型已经在内存中,不用在从SD卡读取了,所以只有重启后第一次会比较慢。

第二次运行结果

Audio time is 4.996812 s.
Model initialization takes 0.797091s
result: "我认为跑步最重要的就是给我带来了身体健康"
Model inference takes 4.916471s.

从结果中可以看出,当音频文件为4.99s时,推理时间为4.91秒,推理时间小于音频时间,刚刚好能满足实时性的需求。