-
Notifications
You must be signed in to change notification settings - Fork 56
/
Copy pathaxis.py
357 lines (304 loc) · 12.2 KB
/
axis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
# -*- coding: utf-8 -*-
"""
Created on Wed Jun 27 11:42:36 2018
@author: ZK
"""
def x1y1x2y2_to_xywh(gtbox):
return list(map(round, [(gtbox[0]+gtbox[2])/2., (gtbox[1]+gtbox[3])/2., gtbox[2]-gtbox[0], gtbox[3]-gtbox[1]]))
def xywh_to_x1y1x2y2(gtbox):
return list(map(round, [gtbox[0]-gtbox[2]/2., gtbox[1]-gtbox[3]/2., gtbox[0]+gtbox[2]/2., gtbox[1]+gtbox[3]/2.]))
def x1y1wh_to_xywh(gtbox):
x1, y1, w, h = gtbox
return [round(x1 + w/2.), round(y1 + h/2.), w, h]
def x1y1wh_to_x1y1x2y2(gtbox):
x1, y1, w, h = gtbox
return [x1, y1, x1+w, y1+h]
#%%
import torch
from torch.nn import Module
from torch.nn import functional as F
#%%
class SmoothL1Loss(Module):
def __init__(self, use_gpu):
super (SmoothL1Loss, self).__init__()
self.use_gpu = use_gpu
return
def forward(self, clabel, target, routput, rlabel):
# rloss = F.smooth_l1_loss(routput, rlabel)
rloss = F.smooth_l1_loss(routput, rlabel, size_average=False, reduce=False)
e = torch.eq(clabel.float(), target)
e = e.squeeze()
e0,e1,e2,e3,e4 = e[0].unsqueeze(0),e[1].unsqueeze(0),e[2].unsqueeze(0),e[3].unsqueeze(0),e[4].unsqueeze(0)
eq = torch.cat([e0,e0,e0,e0,e1,e1,e1,e1,e2,e2,e2,e2,e3,e3,e3,e3,e4,e4,e4,e4], dim=0).float()
rloss = rloss.squeeze()
rloss = torch.mul(eq, rloss)
rloss = torch.sum(rloss)
rloss = torch.div(rloss, eq.nonzero().shape[0]+1e-4)
return rloss
#%%
class Myloss(Module):
def __init__(self):
super (Myloss, self).__init__()
return
def forward(self, coutput, clabel, target, routput, rlabel, lmbda):
closs = F.cross_entropy(coutput, clabel)
# rloss = F.smooth_l1_loss(routput, rlabel)
rloss = F.smooth_l1_loss(routput, rlabel, size_average=False, reduce=False)
e = torch.eq(clabel.float(), target)
e = e.squeeze()
e0,e1,e2,e3,e4 = e[0].unsqueeze(0),e[1].unsqueeze(0),e[2].unsqueeze(0),e[3].unsqueeze(0),e[4].unsqueeze(0)
eq = torch.cat([e0,e0,e0,e0,e1,e1,e1,e1,e2,e2,e2,e2,e3,e3,e3,e3,e4,e4,e4,e4], dim=0).float()
rloss = rloss.squeeze()
rloss = torch.mul(eq, rloss)
rloss = torch.sum(rloss)
rloss = torch.div(rloss, eq.nonzero().shape[0]+1e-4)
loss = torch.add(closs, lmbda, rloss)
return loss
#%%
import math
from PIL import ImageStat, Image
from torchvision.transforms import functional as F2
#%%
def resize(img, size, interpolation=Image.BILINEAR):
assert img.size[0] == img.size[1]
return img.resize((size, size), interpolation), img.size[0] / size
#%%
def point_center_crop(img, gtbox, area):
x, y, dw, dh = gtbox
p = (dw + dh) / 2.
a = math.sqrt((dw + p) * (dh + p))
a *= area
i = round(x - a/2.)
j = round(y - a/2.)
mean = tuple(map(round, ImageStat.Stat(img).mean))
if i < 0:
left = -i
i = 0
else:
left = 0
if j < 0:
top = -j
j = 0
else:
top = 0
if x+a/2. > img.size[0]:
right = round(x+a/2.-img.size[0])
else:
right = 0
if y+a/2. > img.size[1]:
bottom = round(y+a/2.-img.size[1])
else:
bottom = 0
img = F2.pad(img, padding=(left, top, right, bottom), fill=mean, padding_mode='constant')
img = img.crop((i, j, i+round(a), j+round(a)))
return img, [left, top, i, j]
#%%
def cosine_window(coutput1):
math.cos()
return
#%%
#class PointCenterCrop(object):
# def __init__( gtbox, area):
# gtbox = gtbox
# area = area
#
# def __call__( img):
# return point_center_crop(img, gtbox, area)
#
# def __repr__():
# return __class__.__name__ + '(gtbox={0})'.format(gtbox)
#%%
'''
import torch.nn as nn
features = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=11, stride=2),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2),
nn.Conv2d(64, 192, kernel_size=5),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2),
nn.Conv2d(192, 384, kernel_size=3),
nn.ReLU(inplace=True),
nn.Conv2d(384, 256, kernel_size=3),
nn.ReLU(inplace=True),
nn.Conv2d(256, 256, kernel_size=3),
)
k = 5
conv1 = nn.Conv2d(256, 2*k*256, kernel_size=3)
conv2 = nn.Conv2d(256, 4*k*256, kernel_size=3)
conv3 = nn.Conv2d(256, 256, kernel_size=3)
conv4 = nn.Conv2d(256, 256, kernel_size=3)
cconv = nn.Conv2d(256, 2* k, kernel_size = 4, bias = False)
rconv = nn.Conv2d(256, 4* k, kernel_size = 4, bias = False)
# cconv.train(False)
# rconv.train(False)
# reset_params()
# freeze_layers(8)
# def reset_params():
# pretrained_dict = model_zoo.load_url(model_urls['alexnet'])
# model_dict = state_dict()
# pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict}
# model_dict.update(pretrained_dict)
# load_state_dict(model_dict)
# def freeze_layers( number):
# for i in range(number):
# features[i].train(False)
# def forward( template, detection):
template = features(template)
detection = features(detection)
ckernal = conv1(template)
ckernal = ckernal.view(2* k, 256, 4, 4)
cconv.weight = nn.Parameter(ckernal.data)
cinput = conv3(detection)
coutput = cconv(cinput)
rkernal = conv2(template)
rkernal = rkernal.view(4* k, 256, 4, 4)
rconv.weight = nn.Parameter(rkernal.data)
rinput = conv4(detection)
routput = rconv(rinput)
# return template, detection
return coutput, routput
'''
'''
#%%
import numpy as np
import math
import torch
from PIL import Image
from torchvision import transforms
import os
#from torch.utils.data import Dataset
'''
#%%
'''
#%%
import numpy as np
import math
import torch
from torch.utils.data import Dataset, DataLoader
from PIL import Image
from torchvision.transforms import functional as F
import os
from axis import x1y1x2y2_to_xywh, xywh_to_x1y1x2y2, point_center_crop, resize
detection_root_dir = './lq/JPEGImages/'
gtbox_root_dir = './lq/label/'
def _get_anchor_shape( a):
s = a**2
r = [[3*math.sqrt(s/3.),math.sqrt(s/3.)], [2*math.sqrt(s/2.),math.sqrt(s/2.)],
[a,a], [math.sqrt(s/2.),2*math.sqrt(s/2.)], [math.sqrt(s/3.),3*math.sqrt(s/3.)]]
return [list(map(round, i)) for i in r]
def __len__():
return len(os.listdir(detection_root_dir))
"""读取数据集时,将会调用下面这个方法来获取数据
"""
def __getitem__( index):
img = os.listdir(detection_root_dir)[0]
img = Image.open(detection_root_dir + img)
gtbox = os.listdir(gtbox_root_dir)[0]
with open(gtbox_root_dir + gtbox) as f:
gtbox = f.read().split(' ')[1:]
gtbox = [int(i) for i in gtbox]
gtbox = x1y1x2y2_to_xywh(gtbox)
template, _, _ = _transform(img, gtbox, 1, 127)
for index in range(100):
# index=80
img = os.listdir(detection_root_dir)[index]
img = Image.open(detection_root_dir + img)
gtbox = os.listdir(gtbox_root_dir)[index]
with open(gtbox_root_dir + gtbox) as f:
gtbox = f.read().split(' ')[1:]
gtbox = [int(i) for i in gtbox]
gtbox = x1y1x2y2_to_xywh(gtbox)
# template = _transform(img, gtbox, 1, 127)
detection, pcc, ratio = _transform(img, gtbox, 2, 255)
a = (gtbox[2]+gtbox[3]) / 2.
a = math.sqrt((gtbox[2]+a)*(gtbox[3]+a)) * 2
gtbox = [127, 127, round(255*gtbox[2]/a), round(255*gtbox[3]/a)]
list1 = xywh_to_x1y1x2y2(gtbox)
import cv2
detection = cv2.cvtColor(np.asarray(detection),cv2.COLOR_RGB2BGR)
cv2.rectangle(detection, (list1[0],list1[1]), (list1[2],list1[3]), (0,255,0), 1)
detection = Image.fromarray(cv2.cvtColor(detection,cv2.COLOR_BGR2RGB))
detection.save('./tmp/'+str(index)+'.jpg')
#detection = Image.fromarray(np.array(detection))
#detection.show()
clabel, rlabel = _gtbox_to_label(gtbox)
return template, detection, clabel, rlabel, pcc, ratio
#数据转换,包括裁剪、变形、转换为tensor、归一化
#
def _transform( img, gtbox, area, size):
img, pcc = point_center_crop(img, gtbox, area)
img, ratio = resize(img, size)
# img = F.to_tensor(img)
# img = F.normalize(img, [0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
return img, pcc, ratio
# def _transform( img, gtbox, area, scale):
# trans = transforms.Compose([
# PointCenterCrop(gtbox, area = area),
# transforms.Resize(scale),
# transforms.ToTensor(),
# transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
# ])
# return trans(img)
"""根据ground truth box构造class label和reg label
"""
def _gtbox_to_label( gtbox):
clabel = np.zeros([5, 17, 17]) - 100
rlabel = np.zeros([20, 17, 17], dtype = np.float32)
pos, neg = _get_64_anchors(gtbox)
for i in range(len(pos)):
clabel[pos[i, 2], pos[i, 0], pos[i, 1]] = 1
for i in range(len(neg)):
clabel[neg[i, 2], neg[i, 0], neg[i, 1]] = 0
pos_coord = _anchor_coord(pos)
channel0 = (gtbox[0] - pos_coord[:, 0]) / pos_coord[:, 2]
channel1 = (gtbox[1] - pos_coord[:, 1]) / pos_coord[:, 3]
channel2 = np.array([math.log(i) for i in (gtbox[2] / pos_coord[:, 2]).tolist()])
channel3 = np.array([math.log(i) for i in (gtbox[3] / pos_coord[:, 3]).tolist()])
for i in range(len(pos)):
rlabel[pos[i][2]*4, pos[i][0], pos[i][1]] = channel0[i]
rlabel[pos[i][2]*4 + 1, pos[i][0], pos[i][1]] = channel1[i]
rlabel[pos[i][2]*4 + 2, pos[i][0], pos[i][1]] = channel2[i]
rlabel[pos[i][2]*4 + 3, pos[i][0], pos[i][1]] = channel3[i]
return torch.Tensor(clabel).long(), torch.Tensor(rlabel).float()
"""根据anchor在label中的位置来获取anchor在detection frame中的坐标
"""
def _anchor_coord( pos):
result = np.ndarray([0, 4])
for i in pos:
tmp = [7+15*i[0], 7+15*i[1], anchor_shape[i[2]][0], anchor_shape[i[2]][1]]
result = np.concatenate([result, np.array(tmp).reshape([1,4])], axis = 0)
return result
def _get_64_anchors( gtbox):
pos = {}
neg = {}
for a in range(17):
for b in range(17):
for c in range(5):
anchor = [7+15*a, 7+15*b, anchor_shape[c][0], anchor_shape[c][1]]
anchor = xywh_to_x1y1x2y2(anchor)
if anchor[0]>0 and anchor[1]>0 and anchor[2]<255 and anchor[3]<255:
iou = _IOU(anchor, gtbox)
if iou >= 0.6:
pos['%d,%d,%d' % (a,b,c)] = iou
elif iou <= 0.3:
neg['%d,%d,%d' % (a,b,c)] = iou
pos = sorted(pos.items(),key = lambda x:x[1],reverse = True)
pos = [list(map(int, i[0].split(','))) for i in pos[:16]]
neg = sorted(neg.items(),key = lambda x:x[1],reverse = True)
neg = [list(map(int, i[0].split(','))) for i in neg[:(64-len(pos))]]
return np.array(pos), np.array(neg)
# def _f( x):
# if x <= 0: return 0
# elif x >= 254: return 254
# else: return x
def _IOU( a, b):
# a = xywh_to_x1y1x2y2(a)
b = xywh_to_x1y1x2y2(b)
sa = (a[2] - a[0]) * (a[3] - a[1])
sb = (b[2] - b[0]) * (b[3] - b[1])
w = max(0, min(a[2], b[2]) - max(a[0], b[0]))
h = max(0, min(a[3], b[3]) - max(a[1], b[1]))
area = w * h
return area / (sa + sb - area)
'''