-
Notifications
You must be signed in to change notification settings - Fork 56
/
Copy pathSRPN.py
80 lines (69 loc) · 2.81 KB
/
SRPN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
# -*- coding: utf-8 -*-
"""
Created on Wed Jun 20 17:34:57 2018
@author: ZK
"""
import torch.nn as nn
import torch.utils.model_zoo as model_zoo
#%%
model_urls = {'alexnet': 'https://download.pytorch.org/models/alexnet-owt-4df8aa71.pth'}
class SiameseRPN(nn.Module):
def __init__(self):
super(SiameseRPN, self).__init__()
self.features = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=11, stride=2),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2),
nn.Conv2d(64, 192, kernel_size=5),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2),
nn.Conv2d(192, 384, kernel_size=3),
nn.ReLU(inplace=True),
nn.Conv2d(384, 256, kernel_size=3),
nn.ReLU(inplace=True),
nn.Conv2d(256, 256, kernel_size=3),
)
self.k = 5
self.conv1 = nn.Conv2d(256, 2*self.k*256, kernel_size=3)
self.relu1 = nn.ReLU(inplace=True)
self.conv2 = nn.Conv2d(256, 4*self.k*256, kernel_size=3)
self.relu2 = nn.ReLU(inplace=True)
self.conv3 = nn.Conv2d(256, 256, kernel_size=3)
self.relu3 = nn.ReLU(inplace=True)
self.conv4 = nn.Conv2d(256, 256, kernel_size=3)
self.relu4 = nn.ReLU(inplace=True)
self.cconv = nn.Conv2d(256, 2* self.k, kernel_size = 4, bias = False)
self.rconv = nn.Conv2d(256, 4* self.k, kernel_size = 4, bias = False)
self.reset_params()
def reset_params(self):
pretrained_dict = model_zoo.load_url(model_urls['alexnet'])
model_dict = self.state_dict()
pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict}
model_dict.update(pretrained_dict)
self.load_state_dict(model_dict)
def forward(self, template, detection):
template = self.features(template)
detection = self.features(detection)
ckernal = self.conv1(template)
# ckernal = self.relu1(ckernal)
ckernal = ckernal.view(2* self.k, 256, 4, 4)
self.cconv.weight = nn.Parameter(ckernal)
cinput = self.conv3(detection)
# cinput = self.relu3(cinput)
coutput = self.cconv(cinput)
rkernal = self.conv2(template)
# rkernal = self.relu2(rkernal)
rkernal = rkernal.view(4* self.k, 256, 4, 4)
self.rconv.weight = nn.Parameter(rkernal)
rinput = self.conv4(detection)
# rinput = self.relu4(rinput)
routput = self.rconv(rinput)
return coutput, routput
#%%
if __name__ == '__main__':
print('1')
model = SiameseRPN()
#y1, y2 = model(template, detection)
# model2 = RPN()
#z1, z2 = model(y1, y2)
# model3 = SRPN()