-
Notifications
You must be signed in to change notification settings - Fork 550
/
Copy pathbatch.rs
289 lines (256 loc) · 10.2 KB
/
batch.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
//! Performs batch Groth16 proof verification.
//!
//! Batch verification asks whether *all* proofs in some set are valid,
//! rather than asking whether *each* of them is valid. This allows sharing
//! computations among all proof verifications, performing less work overall
//! at the cost of higher latency (the entire batch must complete), complexity of
//! caller code (which must assemble a batch of proofs across work-items),
//! and loss of the ability to easily pinpoint failing proofs.
//!
//! This batch verification implementation is non-adaptive, in the sense that it
//! assumes that all the proofs in the batch are verifiable by the same
//! `VerifyingKey`. The reason is that if you have different proof statements,
//! you need to specify which statement you are proving, which means that you
//! need to refer to or lookup a particular `VerifyingKey`. In practice, with
//! large enough batches, it's manageable and not much worse performance-wise to
//! keep batches of each statement type, vs one large adaptive batch.
use std::ops::AddAssign;
use ff::Field;
use group::{Curve, Group};
use pairing::{MillerLoopResult, MultiMillerLoop};
use rand_core::{CryptoRng, RngCore};
#[cfg(feature = "multicore")]
use rand_core::OsRng;
#[cfg(feature = "multicore")]
use rayon::{iter::ParallelIterator, prelude::ParallelSlice};
use crate::{
groth16::{PreparedVerifyingKey, Proof, VerifyingKey},
VerificationError,
};
/// A batch verification item.
///
/// This struct exists to allow batch processing to be decoupled from the
/// lifetime of the message. This is useful when using the batch verification
/// API in an async context.
#[derive(Clone, Debug)]
pub struct Item<E: MultiMillerLoop> {
proof: Proof<E>,
inputs: Vec<E::Fr>,
}
impl<E: MultiMillerLoop> From<(&Proof<E>, &[E::Fr])> for Item<E> {
fn from((proof, inputs): (&Proof<E>, &[E::Fr])) -> Self {
(proof.clone(), inputs.to_owned()).into()
}
}
impl<E: MultiMillerLoop> From<(Proof<E>, Vec<E::Fr>)> for Item<E> {
fn from((proof, inputs): (Proof<E>, Vec<E::Fr>)) -> Self {
Self { proof, inputs }
}
}
impl<E: MultiMillerLoop> Item<E> {
/// Perform non-batched verification of this `Item`.
///
/// This is useful (in combination with `Item::clone`) for implementing
/// fallback logic when batch verification fails.
pub fn verify_single(self, pvk: &PreparedVerifyingKey<E>) -> Result<(), VerificationError> {
super::verify_proof(pvk, &self.proof, &self.inputs)
}
}
/// A batch verification context.
///
/// In practice, you would create a batch verifier for each proof statement
/// requiring the same `VerifyingKey`.
#[derive(Debug)]
pub struct Verifier<E: MultiMillerLoop> {
items: Vec<Item<E>>,
}
// Need to impl Default by hand to avoid a derived E: Default bound
impl<E: MultiMillerLoop> Default for Verifier<E> {
fn default() -> Self {
Self { items: Vec::new() }
}
}
impl<E: MultiMillerLoop> Verifier<E>
where
E::G1: AddAssign<E::G1>,
{
/// Construct a new batch verifier.
pub fn new() -> Self {
Self::default()
}
/// Queue a (proof, inputs) tuple for verification.
pub fn queue<I: Into<Item<E>>>(&mut self, item: I) {
self.items.push(item.into())
}
/// Perform batch verification with a particular `VerifyingKey`, returning
/// `Ok(())` if all proofs were verified and `VerificationError` otherwise.
#[allow(non_snake_case)]
pub fn verify<R: RngCore + CryptoRng>(
self,
mut rng: R,
vk: &VerifyingKey<E>,
) -> Result<(), VerificationError> {
if self
.items
.iter()
.any(|Item { inputs, .. }| inputs.len() + 1 != vk.ic.len())
{
return Err(VerificationError::InvalidVerifyingKey);
}
let mut ml_terms = Vec::<(E::G1Affine, E::G2Prepared)>::new();
let mut acc_Gammas = vec![E::Fr::ZERO; vk.ic.len()];
let mut acc_Delta = E::G1::identity();
let mut acc_Y = E::Fr::ZERO;
for Item { proof, inputs } in self.items.into_iter() {
// The spec is explicit that z != 0. Field::random is defined to
// return a uniformly-random field element (which may be 0), so we
// loop until it's not, avoiding needing an assert or throwing an
// error through no fault of the batch items. This will likely never
// actually loop, but handles the edge case.
let z = loop {
let z = E::Fr::random(&mut rng);
if !z.is_zero_vartime() {
break z;
}
};
ml_terms.push(((proof.a * z).into(), (-proof.b).into()));
acc_Gammas[0] += &z; // a_0 is implicitly set to 1
for (a_i, acc_Gamma_i) in Iterator::zip(inputs.iter(), acc_Gammas.iter_mut().skip(1)) {
*acc_Gamma_i += &(z * a_i);
}
acc_Delta += proof.c * z;
acc_Y += &z;
}
ml_terms.push((acc_Delta.to_affine(), E::G2Prepared::from(vk.delta_g2)));
let Psi = vk
.ic
.iter()
.zip(acc_Gammas.iter())
.map(|(&Psi_i, acc_Gamma_i)| Psi_i * acc_Gamma_i)
.sum();
ml_terms.push((E::G1Affine::from(Psi), E::G2Prepared::from(vk.gamma_g2)));
// Covers the [acc_Y]⋅e(alpha_g1, beta_g2) component
//
// The multiplication by acc_Y is expensive -- it involves
// exponentiating by acc_Y because the result of the pairing is an
// element of a multiplicative subgroup of a large extension field.
// Instead, we add
// ([acc_Y]⋅alpha_g1, beta_g2)
// to our Miller loop terms because
// [acc_Y]⋅e(alpha_g1, beta_g2) = e([acc_Y]⋅alpha_g1, beta_g2)
ml_terms.push((
E::G1Affine::from(vk.alpha_g1 * acc_Y),
E::G2Prepared::from(vk.beta_g2),
));
let ml_terms = ml_terms.iter().map(|(a, b)| (a, b)).collect::<Vec<_>>();
if E::multi_miller_loop(&ml_terms[..]).final_exponentiation() == E::Gt::identity() {
Ok(())
} else {
Err(VerificationError::InvalidProof)
}
}
/// Perform batch verification with a particular `VerifyingKey`, returning
/// `Ok(())` if all proofs were verified and `VerificationError` otherwise.
///
/// This performs the bulk of internal arithmetic over the global rayon
/// threadpool.
#[cfg(feature = "multicore")]
#[allow(non_snake_case)]
pub fn verify_multicore(self, vk: &VerifyingKey<E>) -> Result<(), VerificationError> {
if self
.items
.iter()
.any(|Item { inputs, .. }| inputs.len() + 1 != vk.ic.len())
{
return Err(VerificationError::InvalidVerifyingKey);
}
struct Accumulator<E: MultiMillerLoop> {
gammas: Vec<E::Fr>,
delta: E::G1,
y: E::Fr,
ml_result: Option<E::Result>,
}
impl<E: MultiMillerLoop> Accumulator<E> {
fn new(ic_len: usize) -> Self {
Accumulator {
gammas: vec![E::Fr::ZERO; ic_len],
delta: E::G1::identity(),
y: E::Fr::ZERO,
ml_result: None,
}
}
}
let ic_len = vk.ic.len();
let acc = self
.items
// This chunk size was obtained heuristically.
.par_chunks(8)
.map(|items| {
let mut acc = Accumulator::<E>::new(ic_len);
let mut ml_terms: Vec<(E::G1Affine, E::G2Prepared)> = vec![];
let z = loop {
let z = E::Fr::random(&mut OsRng);
if !z.is_zero_vartime() {
break z;
}
};
let mut cur_z = z;
for Item { proof, inputs } in items {
acc.gammas[0] += &cur_z;
for (a_i, acc_gamma_i) in
Iterator::zip(inputs.iter(), acc.gammas.iter_mut().skip(1))
{
*acc_gamma_i += &(cur_z * a_i);
}
acc.delta += proof.c * cur_z;
acc.y += &cur_z;
ml_terms.push(((proof.a * cur_z).into(), (-proof.b).into()));
cur_z *= z;
}
let ml_terms = ml_terms.iter().map(|(a, b)| (a, b)).collect::<Vec<_>>();
acc.ml_result = Some(E::multi_miller_loop(&ml_terms[..]));
acc
})
.reduce(
|| Accumulator::<E>::new(ic_len),
|mut a, b| {
for (a, b) in a.gammas.iter_mut().zip(b.gammas.into_iter()) {
*a += b;
}
a.delta += b.delta;
a.y += b.y;
a.ml_result = match (a.ml_result, b.ml_result) {
(Some(a), Some(b)) => Some(a + b),
(Some(a), None) | (None, Some(a)) => Some(a),
(None, None) => None,
};
a
},
);
match acc.ml_result {
None => Ok(()),
Some(mut ml_result) => {
// TODO: could use a multiexp (Bos-Coster maybe?)
let psi = vk
.ic
.iter()
.zip(acc.gammas.into_iter())
.map(|(&psi_i, acc_gamma_i)| psi_i * acc_gamma_i)
.sum();
ml_result += E::multi_miller_loop(&[
(&acc.delta.to_affine(), &E::G2Prepared::from(vk.delta_g2)),
(&E::G1Affine::from(psi), &E::G2Prepared::from(vk.gamma_g2)),
(
&E::G1Affine::from(vk.alpha_g1 * acc.y),
&E::G2Prepared::from(vk.beta_g2),
),
]);
if ml_result.final_exponentiation() == E::Gt::identity() {
Ok(())
} else {
Err(VerificationError::InvalidProof)
}
}
}
}
}