forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
function_impl.cpp
150 lines (127 loc) · 4.4 KB
/
function_impl.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
#include <c10/util/irange.h>
#include <torch/csrc/jit/api/function_impl.h>
#include <torch/csrc/jit/passes/inliner.h>
#include <torch/csrc/jit/frontend/error_report.h>
#include <torch/csrc/jit/passes/constant_pooling.h>
#include <torch/csrc/jit/passes/constant_propagation.h>
#include <torch/csrc/jit/passes/peephole.h>
#ifndef C10_MOBILE
#include <ATen/autocast_mode.h>
#include <torch/csrc/jit/passes/autocast.h>
#endif
namespace torch::jit {
namespace {
c10::FunctionSchema defaultSchemaFor(const GraphFunction& function) {
std::vector<c10::Argument> args;
std::vector<c10::Argument> returns;
Graph& g = *function.graph();
size_t num_inputs = function.num_inputs();
for (const auto i : c10::irange(num_inputs)) {
const Value* v = g.inputs().at(i);
std::string name = v->hasDebugName() ? v->debugNameBase()
: ("argument_" + c10::to_string(i));
args.emplace_back(std::move(name), unshapedType(g.inputs()[i]->type()));
}
for (const auto i : c10::irange(g.outputs().size())) {
returns.emplace_back("", unshapedType(g.outputs()[i]->type()));
}
return {function.name(), "", std::move(args), std::move(returns)};
}
template <typename T, typename F>
T* tryToGraphFunctionImpl(F& function) noexcept {
if (!function.isGraphFunction()) {
return nullptr;
}
return static_cast<T*>(&function);
}
template <typename T, typename F>
T& toGraphFunctionImpl(F& function) {
if (auto* g = tryToGraphFunctionImpl<T>(function)) {
return *g;
}
TORCH_INTERNAL_ASSERT(
false,
"Failed to downcast a Function to a GraphFunction. "
"This probably indicates that the JIT calling context needs a "
"special case on tryToGraphFunction() instead.");
}
} // namespace
void placeholderCreator(GraphFunction&) {
throw RecursiveMethodCallError();
}
void GraphFunction::run(Stack& stack) {
get_executor().run(stack);
}
c10::intrusive_ptr<c10::ivalue::Future> GraphFunction::runAsync(
Stack& stack,
TaskLauncher taskLauncher) {
return get_executor().runAsync(stack, std::move(taskLauncher));
}
void GraphFunction::ensure_defined() {
if (function_creator_) {
auto creator = function_creator_;
function_creator_ = placeholderCreator;
creator(*this);
function_creator_ = nullptr;
}
check_single_output();
}
const c10::FunctionSchema& GraphFunction::getSchema() const {
if (schema_ == nullptr) {
schema_ = std::make_unique<c10::FunctionSchema>(defaultSchemaFor(*this));
}
return *schema_;
}
GraphFunction::SpecializationKey GraphFunction::currentSpecialization() const {
if (force_no_amp_) {
return SpecializationKey::AutocastOff;
}
#ifdef C10_MOBILE
// disabling autodiff pass for mobile build since autocast APIs don't exist
return SpecializationKey::AutocastOff;
#else
bool cpu_enabled = at::autocast::is_cpu_enabled();
bool gpu_enabled = at::autocast::is_enabled();
if (cpu_enabled && gpu_enabled) {
return SpecializationKey::CpuGpuAutocastOn;
} else if (!cpu_enabled && !gpu_enabled) {
return SpecializationKey::AutocastOff;
} else {
return gpu_enabled ? SpecializationKey::GpuAutocastOn
: SpecializationKey::CpuAutocastOn;
}
#endif
}
void preoptimizeGraph(std::shared_ptr<Graph>& graph, bool disable_autocast) {
Inline(*graph);
// Peephole Optimize cleans up many "is None" checks and creates constant prop
// opportunities
PeepholeOptimize(graph, true);
// AliasDb construction can be slow, so run it just on immutable types
// to clean up constant Ifs & other easy wins
ConstantPropagationImmutableTypes(graph);
#ifndef C10_MOBILE
// Inject casts for automatic mixed precision
//
// TODO: Ideally, this pass could run earlier, before inlining
// or any other optimizations. That setup is preferable because:
// 1. The AMP pass would be self-contained and function independently
// of the any optimizations
// 2. AMP transformations would benefit from followup passes's cleanup
//
if (!disable_autocast) {
Autocast(graph);
}
#endif
ConstantPooling(graph);
}
GraphFunction* tryToGraphFunction(Function& function) noexcept {
return tryToGraphFunctionImpl<GraphFunction>(function);
}
GraphFunction& toGraphFunction(Function& function) {
return toGraphFunctionImpl<GraphFunction>(function);
}
const GraphFunction& toGraphFunction(const Function& function) {
return toGraphFunctionImpl<const GraphFunction>(function);
}
} // namespace torch::jit