forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
cudnn_wrappers.h
199 lines (172 loc) · 6.8 KB
/
cudnn_wrappers.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
// Copyright 2004-present Facebook. All Rights Reserved.
#ifndef CAFFE2_CORE_CUDNN_WRAPPERS_H_
#define CAFFE2_CORE_CUDNN_WRAPPERS_H_
#include "caffe2/core/common_cudnn.h"
#include "caffe2/core/context_gpu.h"
// Note [What is CuDNNWrapper good for?]
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// Suppose you are writing a kernel that calls into CuDNN, and
// you need a cudnnHandle_t to pass to the kernel call. How should
// you go about getting one of those handles? You'd prefer not
// to make a new cudnnHandle_t every call; this can be somewhat
// expensive (1-2%, according to some measurements in TensorFlow.)
// But cudnnHandle_t is not thread-safe, so we can't just have
// a single global cudnnHandle_t that everyone uses.
//
// Thus, the most common method in Caffe2 for getting a CuDNN handle
// is to get a per-thread, per-stream CuDNN handle from CUDAContext
// (which knows what the current thread and stream are). The idiomatic
// way to do this in Caffe2 today is to make a CuDNNWrapper and then call
// inline_cudnn_handle(), although you didn't really need the
// CuDNNWrapper at all (you could have gotten it directly from
// CUDAContext.)
//
// So, what's all this business about CuDNNWrapper? In theory, it was
// designed with a more specialized use-case in mind, where you need to
// make multiple calls to CuDNN in parallel; e.g., when manually
// computing group convolution. By using with_cudnn_state(), you can
// get separate cudnnHandle_t and CUDA stream per parallel thread of
// execution, and run all of the cuDNN calls in parallel. CuDNNWrapper
// handles the business of synchronizing with the stream prior to this
// call.
//
// (By the way, this is why no such CUBLASWrapper exists; there isn't
// ever any reason you need to call cublas in parallel, since most
// cublas operations have batched variants.)
//
// Now, that's the theory... in practice, this is only ever used when
// multiple operators are run in parallel, and not to actually
// parallelize multiple CuDNN calls (for example, group convolution is
// now supported natively in CuDNN.) So... while the kit provided here
// might be useful for someone else in the future, it's not really used
// now. So we might consider deleting it, or unifying this mechanism
// with PyTorch's own CuDNN handle pool. (which is it's own thing.)
namespace caffe2 {
class CuDNNWrapper;
/**
* CuDNNWorkspace is a wrapper around a raw cuda pointer that holds the cudnn
* scratch space. This struct is meant to be only used in CuDNNWrapper to
* provide a program-wide scratch space for CuDNN. The reason behind it is that
* cudnn function calls are usually very efficient, hence one probably does not
* want to run multiple cudnn calls at the same time. As a result, one should
* not need more than one cudnn workspace per device.
*/
struct CuDNNWorkspace {
~CuDNNWorkspace() noexcept {}
void* get(size_t nbytes) {
if (nbytes_ < nbytes) {
reset();
data_ = CUDAContext::New(nbytes);
nbytes_ = nbytes;
}
CAFFE_ENFORCE_GE(nbytes_, nbytes);
return data_.get();
}
void reset() {
data_.clear();
nbytes_ = 0;
}
private:
at::DataPtr data_{nullptr, nullptr, &NoDelete, at::Device(CUDA)};
size_t nbytes_{0};
};
// CuDNNState is the owner of the CuDNNWorkspace, and serializes all
// executions of operations that use the state onto it's own stream
// (so multiple Net workers can reuse the same workspace from
// different threads and CUDA streams).
class CuDNNState {
public:
explicit CuDNNState(size_t gpu_id) : gpu_id_(gpu_id) {
CUDAGuard g(gpu_id_);
CUDNN_ENFORCE(cudnnCreate(&cudnn_handle_));
CUDA_ENFORCE(cudaEventCreate(&before_));
CUDA_ENFORCE(cudaEventCreate(&after_));
CUDA_ENFORCE(cudaStreamCreate(&stream_));
CUDNN_ENFORCE(cudnnSetStream(cudnn_handle_, stream_));
}
~CuDNNState() noexcept {
CUDAGuard g(gpu_id_);
CUDNN_CHECK(cudnnDestroy(cudnn_handle_));
CUDA_CHECK(cudaStreamDestroy(stream_));
CUDA_CHECK(cudaEventDestroy(after_));
CUDA_CHECK(cudaEventDestroy(before_));
}
cudnnHandle_t& cudnn_handle() {
return cudnn_handle_;
}
CuDNNWorkspace& workspace() {
return workspace_;
}
template <typename F>
void execute(cudaStream_t stream, F&& f) {
CUDA_ENFORCE(cudaEventRecord(before_, stream));
CUDA_ENFORCE(cudaStreamWaitEvent(stream_, before_, 0));
f(this);
CUDA_ENFORCE(cudaEventRecord(after_, stream_));
CUDA_ENFORCE(cudaStreamWaitEvent(stream, after_, 0));
}
private:
cudnnHandle_t cudnn_handle_{nullptr};
cudaEvent_t before_{nullptr};
cudaEvent_t after_{nullptr};
cudaStream_t stream_{nullptr};
CuDNNWorkspace workspace_;
size_t gpu_id_{0};
C10_DISABLE_COPY_AND_ASSIGN(CuDNNState);
};
/**
* CuDNNWrapper is a class that wraps the cudnn handles and cudnn workspaces.
*
* The wrapper ensures that for each thread and each gpu, there is one
* identical cudnn handle, which is also associated with the thread-local
* per-device cuda stream. The wrapper also hosts the device-specific cudnn
* workspace (scratch space for some cudnn functions).
*
*/
class CuDNNWrapper {
public:
/**
* Creates a cudnn wrapper associated with a CUDAContext object. Note that
* the CUDAContext object should outlive the CuDNNWrapper.
*/
explicit CuDNNWrapper(CUDAContext* context) : context_(context) {}
/**
* Returns the inline cudnn handle that executes on the current
* thread's cuda_stream.
*/
cudnnHandle_t inline_cudnn_handle() {
return context_->cudnn_handle();
}
// Executes the closure F on the CuDNNState associated with state_idx
template <typename F>
void with_cudnn_state(size_t state_idx, F&& f) {
CAFFE_ENFORCE(
state_idx < CAFFE2_COMPILE_TIME_MAX_CUDNN_STATES, "Invalid state_idx");
auto& sync_state = cudnn_states()[context_->device_id()][state_idx];
CUDAGuard dg(context_->device_id());
// We need to serialize execution on the CuDNNState as we can't
// allow multiple threads to race through the cudaEventRecord
// calls (so a worker thread might wait on another worker thread's
// execution)
std::lock_guard<std::mutex> g(sync_state.mutex);
if (!sync_state.state.get()) {
sync_state.state.reset(new CuDNNState(context_->device_id()));
}
TORCH_CHECK_NOTNULL(sync_state.state.get())->execute(context_->cuda_stream(), f);
}
protected:
// Pointer to an external cuda context that the cudnn wrapper will use.
CUDAContext* context_;
static constexpr size_t CAFFE2_COMPILE_TIME_MAX_CUDNN_STATES = 4;
struct SyncedCuDNNState {
std::mutex mutex;
std::unique_ptr<CuDNNState> state;
};
using PerGPUCuDNNStates = std::array<
std::array<SyncedCuDNNState, CAFFE2_COMPILE_TIME_MAX_CUDNN_STATES>,
C10_COMPILE_TIME_MAX_GPUS>;
static PerGPUCuDNNStates& cudnn_states();
C10_DISABLE_COPY_AND_ASSIGN(CuDNNWrapper);
};
}; // namespace caffe2
#endif