-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathsinglepulse.py
212 lines (197 loc) · 8.22 KB
/
singlepulse.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
import numpy as np
import os,sys
import scipy.stats as stats
import ubc_AI.samples
DM_range_factor = 0.2
BINRATIO = 25
def rotate(data, deltaphase):
size = data.shape[-1]
deltabin = np.round(size * deltaphase)
return np.roll(data, int(deltabin), axis=-1)
def calDMcurve(data2d, freqs, dm, period):
dmfac = 4.15e3 * np.abs(1./freqs.min()**2 - 1./freqs.max()**2)
ddm = DM_range_factor * period / dmfac
lowdm = max(0, dm-ddm)
hidm = dm+ddm
dms = np.linspace(lowdm, hidm, 100)
ddms = dms - dm
chisqs = []
data2d.shape[0]
for i,ddm in enumerate(ddms):
deltaphases = ddm * 4.15e3 * 1. / freqs**2 / period
data = np.array([rotate(data2d[j,:], dp) for j,dp in enumerate(deltaphases)])
chisqs.append(stats.chisquare(data.sum(0))[0])
return np.array(chisqs)
def greyscale(img):
global_max = np.maximum.reduce(np.maximum.reduce(img))
min_parts = np.minimum.reduce(img, 1)
img = (img-min_parts[:,np.newaxis])/global_max
return img
class singlepulse(object):
initialize = False
def __init__(self, data, dm, duration, freq_lo, freq_hi, align=True, centre=True):
self.data = data
self.freq_lo = freq_lo
self.freq_hi = freq_hi
self.dm = dm
self.duration = duration
self.profile = self.data.sum(0)
mx = self.profile.argmax()
if centre:
nbin = self.profile.size
noff = nbin/2 - mx
self.data = np.roll(self.data, noff, axis=-1)
if align:
self.align = mx
else:
self.align = 0
self.extracted_feature = {}
self.initialize = True
def getdata(self, phasebins=0, freqbins=0, timebins=0, DMbins=0, intervals=0, subbands=0, bandpass=0, ratings=None):
"""
input: feature=feature_size
possible features:
phasebins: summmed profile, data cube (self.profs) summed(projected) to the phase axis.
freqbins: summed frequency profile, data cube projected to the frequency axis
timebins: summed time profile, data cube projected to the time axis.
DMbins: DM curves.
intervals: the time vs phase image
subbands: the subband vs phase image
ratings: List of possible rating stored in the pfd file, possible values including: period, redchi2, offredchi2, avgvoverc
usage examples:
"""
if not 'extracted_feature' in self.__dict__:
self.extracted_feature = {}
data = self.data
normalize = ubc_AI.samples.normalize
downsample = ubc_AI.samples.downsample
def getsumprofs(M):
feature = '%s:%s' % ('phasebins', M)
if M == 0:
return np.array([])
prof = normalize(data).sum(0)
result = normalize(downsample(prof,M,align=self.align).ravel())
self.extracted_feature[feature] = np.array(result)
return self.extracted_feature[feature]
def getfreqprofs(M):
feature = '%s:%s' % ('freqbins', M)
if M == 0:
return np.array([])
prof = normalize(data).sum(1)
result = normalize(downsample(data,M,align=self.align).ravel())
self.extracted_feature[feature] = np.array(result)
return self.extracted_feature[feature]
def gettimeprofs(M):
feature = '%s:%s' % ('timebins', M)
if M == 0:
return np.array([])
prof = normalize(data).sum(0)
result = normalize(downsample(data,M,align=self.align).ravel())
self.extracted_feature[feature] = np.array(result)
return self.extracted_feature[feature]
def getbandpass(M):
feature = '%s:%s' % ('bandpass', M)
if M == 0:
return np.array([])
prof = normalize(data).sum(1)
result = normalize(downsample(data,M,align=self.align).ravel())
self.extracted_feature[feature] = np.array(result)
return self.extracted_feature[feature]
def getDMcurve(M):
feature = '%s:%s' % ('DMbins', M)
if M == 0:
return np.array([])
fbins = self.data.shape[0]
newfreqs = np.mgrid[self.freq_lo:self.freq_hi:fbins*1j]
chisqs = calDMcurve(data, newfreqs, self.dm, self.duration)
#chisqs = calDMcurve(self.data.sum(0), self.dms - self.dm, self.freqs, self.period)
result = normalize(downsample(chisqs,M).ravel())
self.extracted_feature[feature] = np.array(result)
return self.extracted_feature[feature]
def getintervals(M):
feature = '%s:%s' % ('intervals', M)
if M == 0:
return np.array([])
img = greyscale(data)
result = downsample(normalize(img),M,align=self.align).ravel()
self.extracted_feature[feature] = np.array(result)
return self.extracted_feature[feature]
def getsubbands(M):
feature = '%s:%s' % ('subbands', M)
if M == 0:
return np.array([])
img = greyscale(data)
result = downsample(normalize(img),M,align=self.align).ravel()
self.extracted_feature[feature] = np.array(result)
return self.extracted_feature[feature]
def getratings(L):
feature = '%s:%s' % ('ratings', L)
if L == None:
return np.array([])
if not feature in self.extracted_feature:
result = []
for rating in L:
if rating == 'duration':
result.append(self.duration)
elif rating == 'period':
result.append(self.duration)
elif rating == 'dm':
result.append(self.dm)
else:
result.append(self.__dict__[rating])
self.extracted_feature[feature] = np.array(result)
return self.extracted_feature[feature]
data = np.hstack((getsumprofs(phasebins), getfreqprofs(freqbins), gettimeprofs(timebins), getbandpass(bandpass), getDMcurve(DMbins), getintervals(intervals), getsubbands(subbands), getratings(ratings)))
return data
class SPdata(singlepulse):
def __init__(self, spfile, align=True, centre=True):
npzfile = np.load(spfile)
text_array = npzfile['text_array']
fn = text_array[0]
telescope = text_array[1]
RA = text_array[2]
dec = text_array[3]
MJD = float(text_array[4])
#mjd = Popen(["mjd2cal", "%f"%MJD], stdout=PIPE, stderr=PIPE)
#date, err = mjd.communicate()
#date = date.split()[2:5]
#rank = int(text_array[5])
nsub = int(text_array[6])
nbins = int(text_array[7])
subdm = dm = sweep_dm = float(text_array[8])
sigma = float(text_array[9])
sample_number = int(text_array[10])
duration = float(text_array[11])
width_bins = int(text_array[12])
pulse_width = float(text_array[13])
tsamp = float(text_array[14])
Total_observed_time = float(text_array[15])
start = float(text_array[16])
start = start - 0.25*duration
datastart = float(text_array[17])
datasamp = float(text_array[18])
datanumspectra = float(text_array[19])
min_freq = float(text_array[20])
max_freq = float(text_array[21])
sweep_duration = float(text_array[22])
sweeped_start = float(text_array[23])
self.dm = dm
self.period = duration/2.
self.ra = RA
self.dec = dec
data = npzfile['Data_dedisp_zerodm'].astype(np.float64)
row, col = data.shape
dataorg = data[:,:col/2]
fbin, tbin = dataorg.shape
#print tbin, fbin
M = max(int(tbin/BINRATIO), 1)
if M > 1:
datacut = dataorg[:,:M * BINRATIO]
data = datacut.reshape(fbin, BINRATIO, M).sum(axis=-1)
else:
data = dataorg
#print tbin, fbin, M, data.shape
#from pylab import *
#imshow(data, aspect='auto')
#show()
singlepulse.__init__(self, data, dm, self.period, min_freq, max_freq, align=align, centre=centre )