-
Notifications
You must be signed in to change notification settings - Fork 0
/
visualization_test.py
537 lines (473 loc) · 20.1 KB
/
visualization_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
import tensorflow as tf
import tensorflow_hub as hub
import numpy as np
import cv2
import time
# Import matplotlib libraries
from matplotlib import pyplot as plt
from matplotlib.collections import LineCollection
import matplotlib.patches as patches
from csv_convert import write_to_csv
from alarm import alarm,cancal_alarm
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '1'
# Some modules to display an animation using imageio.
#import imageio
#from IPython.display import HTML, display
# Dictionary that maps from joint names to keypoint indices.
KEYPOINT_DICT = {
'nose': 0,
'left_eye': 1,
'right_eye': 2,
'left_ear': 3,
'right_ear': 4,
'left_shoulder': 5,
'right_shoulder': 6,
'left_elbow': 7,
'right_elbow': 8,
'left_wrist': 9,
'right_wrist': 10,
'left_hip': 11,
'right_hip': 12,
'left_knee': 13,
'right_knee': 14,
'left_ankle': 15,
'right_ankle': 16
}
# Maps bones to a matplotlib color name.
KEYPOINT_EDGE_INDS_TO_COLOR = {
(0, 1): 'm',
(0, 2): 'c',
(1, 3): 'm',
(2, 4): 'c',
(0, 5): 'm',
(0, 6): 'c',
(5, 7): 'm',
(7, 9): 'm',
(6, 8): 'c',
(8, 10): 'c',
(5, 6): 'y',
(5, 11): 'm',
(6, 12): 'c',
(11, 12): 'y',
(11, 13): 'm',
(13, 15): 'm',
(12, 14): 'c',
(14, 16): 'c'
}
def _keypoints_and_edges_for_display(keypoints_with_scores,
height,
width,
keypoint_threshold=0.11):
"""Returns high confidence keypoints and edges for visualization.
Args:
keypoints_with_scores: A numpy array with shape [1, 1, 17, 3] representing
the keypoint coordinates and scores returned from the MoveNet model.
height: height of the image in pixels.
width: width of the image in pixels.
keypoint_threshold: minimum confidence score for a keypoint to be
visualized.
Returns:
A (keypoints_xy, edges_xy, edge_colors) containing:
* the coordinates of all keypoints of all detected entities;
* the coordinates of all skeleton edges of all detected entities;
* the colors in which the edges should be plotted.
"""
keypoints_all = []
keypoint_edges_all = []
edge_colors = []
num_instances, _, _, _ = keypoints_with_scores.shape
for idx in range(num_instances):
kpts_x = keypoints_with_scores[0, idx, :, 1]
kpts_y = keypoints_with_scores[0, idx, :, 0]
kpts_scores = keypoints_with_scores[0, idx, :, 2]
kpts_absolute_xy = np.stack(
[width * np.array(kpts_x), height * np.array(kpts_y)], axis=-1)
kpts_above_thresh_absolute = kpts_absolute_xy[
kpts_scores > keypoint_threshold, :]
keypoints_all.append(kpts_above_thresh_absolute)
for edge_pair, color in KEYPOINT_EDGE_INDS_TO_COLOR.items():
if (kpts_scores[edge_pair[0]] > keypoint_threshold and
kpts_scores[edge_pair[1]] > keypoint_threshold):
x_start = kpts_absolute_xy[edge_pair[0], 0]
y_start = kpts_absolute_xy[edge_pair[0], 1]
x_end = kpts_absolute_xy[edge_pair[1], 0]
y_end = kpts_absolute_xy[edge_pair[1], 1]
line_seg = np.array([[x_start, y_start], [x_end, y_end]])
keypoint_edges_all.append(line_seg)
edge_colors.append(color)
if keypoints_all:
keypoints_xy = np.concatenate(keypoints_all, axis=0)
else:
keypoints_xy = np.zeros((0, 17, 2))
if keypoint_edges_all:
edges_xy = np.stack(keypoint_edges_all, axis=0)
else:
edges_xy = np.zeros((0, 2, 2))
return keypoints_xy, edges_xy, edge_colors
def draw_prediction_on_image(
image, keypoints_with_scores, crop_region=None, close_figure=False,
output_image_height=None):
"""Draws the keypoint predictions on image.
Args:
image: A numpy array with shape [height, width, channel] representing the
pixel values of the input image.
keypoints_with_scores: A numpy array with shape [1, 1, 17, 3] representing
the keypoint coordinates and scores returned from the MoveNet model.
crop_region: A dictionary that defines the coordinates of the bounding box
of the crop region in normalized coordinates (see the init_crop_region
function below for more detail). If provided, this function will also
draw the bounding box on the image.
output_image_height: An integer indicating the height of the output image.
Note that the image aspect ratio will be the same as the input image.
Returns:
A numpy array with shape [out_height, out_width, channel] representing the
image overlaid with keypoint predictions.
"""
height, width, channel = image.shape
aspect_ratio = float(width) / height
fig, ax = plt.subplots(figsize=(12 * aspect_ratio, 12))
# To remove the huge white borders
fig.tight_layout(pad=0)
ax.margins(0)
ax.set_yticklabels([])
ax.set_xticklabels([])
plt.axis('off')
im = ax.imshow(image)
line_segments = LineCollection([], linewidths=(4), linestyle='solid')
ax.add_collection(line_segments)
# Turn off tick labels
scat = ax.scatter([], [], s=60, color='#FF1493', zorder=3)
(keypoint_locs, keypoint_edges,
edge_colors) = _keypoints_and_edges_for_display(
keypoints_with_scores, height, width)
line_segments.set_segments(keypoint_edges)
line_segments.set_color(edge_colors)
if keypoint_edges.shape[0]:
line_segments.set_segments(keypoint_edges)
line_segments.set_color(edge_colors)
if keypoint_locs.shape[0]:
scat.set_offsets(keypoint_locs)
if crop_region is not None:
xmin = max(crop_region['x_min'] * width, 0.0)
ymin = max(crop_region['y_min'] * height, 0.0)
rec_width = min(crop_region['x_max'], 0.99) * width - xmin
rec_height = min(crop_region['y_max'], 0.99) * height - ymin
rect = patches.Rectangle(
(xmin,ymin), rec_width, rec_height,
linewidth=1, edgecolor='b', facecolor='none')
ax.add_patch(rect)
fig.canvas.draw()
image_from_plot = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)
image_from_plot = image_from_plot.reshape(
fig.canvas.get_width_height()[::-1] + (3,))
plt.close(fig)
if output_image_height is not None:
output_image_width = int(output_image_height / height * width)
image_from_plot = cv2.resize(
image_from_plot, dsize=(output_image_width, output_image_height),
interpolation=cv2.INTER_CUBIC)
return image_from_plot
#model_name = "movenet_lightning"
# if "tflite" in model_name:
# if "movenet_lightning_f16" in model_name:
# !wget -q -O model.tflite https://tfhub.dev/google/lite-model/movenet/singlepose/lightning/tflite/float16/4?lite-format=tflite
# input_size = 192
# elif "movenet_thunder_f16" in model_name:
# !wget -q -O model.tflite https://tfhub.dev/google/lite-model/movenet/singlepose/thunder/tflite/float16/4?lite-format=tflite
# input_size = 256
# elif "movenet_lightning_int8" in model_name:
# !wget -q -O model.tflite https://tfhub.dev/google/lite-model/movenet/singlepose/lightning/tflite/int8/4?lite-format=tflite
# input_size = 192
# elif "movenet_thunder_int8" in model_name:
# !wget -q -O model.tflite https://tfhub.dev/google/lite-model/movenet/singlepose/thunder/tflite/int8/4?lite-format=tflite
# input_size = 256
# else:
# raise ValueError("Unsupported model name: %s" % model_name)
#
# # Initialize the TFLite interpreter
# interpreter = tf.lite.Interpreter(model_path="model.tflite")
# interpreter.allocate_tensors()
#
# def movenet(input_image):
# """Runs detection on an input image.
#
# Args:
# input_image: A [1, height, width, 3] tensor represents the input image
# pixels. Note that the height/width should already be resized and match the
# expected input resolution of the model before passing into this function.
#
# Returns:
# A [1, 1, 17, 3] float numpy array representing the predicted keypoint
# coordinates and scores.
# """
# # TF Lite format expects tensor type of uint8.
# input_image = tf.cast(input_image, dtype=tf.uint8)
# input_details = interpreter.get_input_details()
# output_details = interpreter.get_output_details()
# interpreter.set_tensor(input_details[0]['index'], input_image.numpy())
# # Invoke inference.
# interpreter.invoke()
# # Get the model prediction.
# keypoints_with_scores = interpreter.get_tensor(output_details[0]['index'])
# return keypoints_with_scores
#
# else:
model_name = "movenet_thunder"
if "movenet_lightning" in model_name:
module = hub.load("https://tfhub.dev/google/movenet/singlepose/lightning/4")
input_size = 192
elif "movenet_thunder" in model_name:
module = hub.load("https://tfhub.dev/google/movenet/singlepose/thunder/4")
input_size = 256
else:
raise ValueError("Unsupported model name: %s" % model_name)
def movenet(input_image):
"""Runs detection on an input image.
Args:
input_image: A [1, height, width, 3] tensor represents the input image
pixels. Note that the height/width should already be resized and match the
expected input resolution of the model before passing into this function.
Returns:
A [1, 1, 17, 3] float numpy array representing the predicted keypoint
coordinates and scores.
"""
model = module.signatures['serving_default']
# SavedModel format expects tensor type of int32.
input_image = tf.cast(input_image, dtype=tf.int32)
# Run model inference.
outputs = model(input_image)
# Output is a [1, 1, 17, 3] tensor.
keypoints_with_scores = outputs['output_0'].numpy()
print(keypoints_with_scores.shape)
return keypoints_with_scores
# Confidence score to determine whether a keypoint prediction is reliable.
MIN_CROP_KEYPOINT_SCORE = 0.3
def init_crop_region(image_height, image_width):
"""Defines the default crop region.
The function provides the initial crop region (pads the full image from both
sides to make it a square image) when the algorithm cannot reliably determine
the crop region from the previous frame.
"""
if image_width > image_height:
box_height = image_width / image_height
box_width = 1.0
y_min = (image_height / 2 - image_width / 2) / image_height
x_min = 0.0
else:
box_height = 1.0
box_width = image_height / image_width
y_min = 0.0
x_min = (image_width / 2 - image_height / 2) / image_width
return {
'y_min': y_min,
'x_min': x_min,
'y_max': y_min + box_height,
'x_max': x_min + box_width,
'height': box_height,
'width': box_width
}
def torso_visible(keypoints):
"""Checks whether there are enough torso keypoints.
This function checks whether the model is confident at predicting one of the
shoulders/hips which is required to determine a good crop region.
"""
return ((keypoints[0, 0, KEYPOINT_DICT['left_hip'], 2] >
MIN_CROP_KEYPOINT_SCORE or
keypoints[0, 0, KEYPOINT_DICT['right_hip'], 2] >
MIN_CROP_KEYPOINT_SCORE) and
(keypoints[0, 0, KEYPOINT_DICT['left_shoulder'], 2] >
MIN_CROP_KEYPOINT_SCORE or
keypoints[0, 0, KEYPOINT_DICT['right_shoulder'], 2] >
MIN_CROP_KEYPOINT_SCORE))
def determine_torso_and_body_range(
keypoints, target_keypoints, center_y, center_x):
"""Calculates the maximum distance from each keypoints to the center location.
The function returns the maximum distances from the two sets of keypoints:
full 17 keypoints and 4 torso keypoints. The returned information will be
used to determine the crop size. See determineCropRegion for more detail.
"""
torso_joints = ['left_shoulder', 'right_shoulder', 'left_hip', 'right_hip']
max_torso_yrange = 0.0
max_torso_xrange = 0.0
for joint in torso_joints:
dist_y = abs(center_y - target_keypoints[joint][0])
dist_x = abs(center_x - target_keypoints[joint][1])
if dist_y > max_torso_yrange:
max_torso_yrange = dist_y
if dist_x > max_torso_xrange:
max_torso_xrange = dist_x
max_body_yrange = 0.0
max_body_xrange = 0.0
for joint in KEYPOINT_DICT.keys():
if keypoints[0, 0, KEYPOINT_DICT[joint], 2] < MIN_CROP_KEYPOINT_SCORE:
continue
dist_y = abs(center_y - target_keypoints[joint][0]);
dist_x = abs(center_x - target_keypoints[joint][1]);
if dist_y > max_body_yrange:
max_body_yrange = dist_y
if dist_x > max_body_xrange:
max_body_xrange = dist_x
return [max_torso_yrange, max_torso_xrange, max_body_yrange, max_body_xrange]
def determine_crop_region(
keypoints, image_height,
image_width):
"""Determines the region to crop the image for the model to run inference on.
The algorithm uses the detected joints from the previous frame to estimate
the square region that encloses the full body of the target person and
centers at the midpoint of two hip joints. The crop size is determined by
the distances between each joint and the center point.
When the model is not confident with the four torso joint predictions, the
function returns a default crop which is the full image padded to square.
"""
target_keypoints = {}
for joint in KEYPOINT_DICT.keys():
target_keypoints[joint] = [
keypoints[0, 0, KEYPOINT_DICT[joint], 0] * image_height,
keypoints[0, 0, KEYPOINT_DICT[joint], 1] * image_width
]
if torso_visible(keypoints):
center_y = (target_keypoints['left_hip'][0] +
target_keypoints['right_hip'][0]) / 2;
center_x = (target_keypoints['left_hip'][1] +
target_keypoints['right_hip'][1]) / 2;
(max_torso_yrange, max_torso_xrange,
max_body_yrange, max_body_xrange) = determine_torso_and_body_range(
keypoints, target_keypoints, center_y, center_x)
crop_length_half = np.amax(
[max_torso_xrange * 1.9, max_torso_yrange * 1.9,
max_body_yrange * 1.2, max_body_xrange * 1.2])
tmp = np.array(
[center_x, image_width - center_x, center_y, image_height - center_y])
crop_length_half = np.amin(
[crop_length_half, np.amax(tmp)]);
crop_corner = [center_y - crop_length_half, center_x - crop_length_half];
if crop_length_half > max(image_width, image_height) / 2:
return init_crop_region(image_height, image_width)
else:
crop_length = crop_length_half * 2;
return {
'y_min': crop_corner[0] / image_height,
'x_min': crop_corner[1] / image_width,
'y_max': (crop_corner[0] + crop_length) / image_height,
'x_max': (crop_corner[1] + crop_length) / image_width,
'height': (crop_corner[0] + crop_length) / image_height -
crop_corner[0] / image_height,
'width': (crop_corner[1] + crop_length) / image_width -
crop_corner[1] / image_width
}
else:
return init_crop_region(image_height, image_width)
def crop_and_resize(image, crop_region, crop_size):
"""Crops and resize the image to prepare for the model input."""
boxes=[[crop_region['y_min'], crop_region['x_min'],
crop_region['y_max'], crop_region['x_max']]]
output_image = tf.image.crop_and_resize(
image, box_indices=[0], boxes=boxes, crop_size=crop_size)
return output_image
def run_inference(movenet, image, crop_region, crop_size):
"""Runs model inferece on the cropped region.
The function runs the model inference on the cropped region and updates the
model output to the original image coordinate system.
"""
image_height, image_width, _ = image.shape
input_image = crop_and_resize(
tf.expand_dims(image, axis=0), crop_region, crop_size=crop_size)
# Run model inference.
keypoints_with_scores = movenet(input_image)
# Update the coordinates.
for idx in range(17):
keypoints_with_scores[0, 0, idx, 0] = (
crop_region['y_min'] * image_height +
crop_region['height'] * image_height *
keypoints_with_scores[0, 0, idx, 0]) / image_height
keypoints_with_scores[0, 0, idx, 1] = (
crop_region['x_min'] * image_width +
crop_region['width'] * image_width *
keypoints_with_scores[0, 0, idx, 1]) / image_width
return keypoints_with_scores
def main():
count = 0#for the ini of the pose
keypoints_list = []
cap = cv2.VideoCapture(0)
cap.set(cv2.CAP_PROP_FPS, 30)
cap.set(cv2.CAP_PROP_FRAME_WIDTH, 640)
cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 480)
image_height, image_width, _ = 480, 640, 3
crop_region = init_crop_region(image_height, image_width)
while True:
ret, frame = cap.read()
#frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
#frame = cv2.resize(frame, (256, 256))
# tframe=frame.copy()#frame是numpy类型,tframe是tensor类型
# tframe = tf.image.resize_with_pad(tf.expand_dims(tframe, axis=0), 256, 256)
# tframe = tf.cast(tframe, dtype=tf.int32)
# print(tframe.shape,'tframe.shape')
print(frame.shape, 'frame.shape')
#keypoints_with_scores =movenet(tframe)
#bar = display(progress(0, num_frames - 1), display_id=True)
#for frame_idx in range(int(num_frames)):
#print(frame_idx, 'frame_idx')
keypoints_with_scores = run_inference(movenet, frame, crop_region,crop_size=[256, 256])
#crop_region = determine_crop_region(keypoints_with_scores, image_height, image_width)
#bar.update(progress(frame_idx, num_frames - 1))
# print(type(frame),'frame')
# print(type(tframe), 'tframe')
#print(type(keypoints_with_scores), 'keypoints_with_scores')
# print(outputs.shape,'outputs.shape')#输出outputs类型(1, 1, 17, 3)
# print(type(outputs),'outputs')#输出outputs类型<class 'numpy.ndarray'>
# keypoints = outputs['output_0'].numpy()[0]
x, y, score ,z= keypoints_with_scores[0, 0, :, 0], keypoints_with_scores[0, 0, :, 1], keypoints_with_scores[0, 0, :, 2], keypoints_with_scores[0, 0, :, 0:2]
x = np.reshape(x,(17,1))
y = np.reshape(y,(17,1))
z = np.reshape(z,(17,2))
score = np.reshape(score,(17,1))
condition1=score[13] >0.2 or score [14] >0.2 or score[15] >0.2 or score[16] >0.2#detect legs and hip
# for i in range(len(x)):
# if score[i] > 0.3:
# cv2.circle(frame, (int(y[i] * 640), int(x[i] * 480)), 5, (0, 0, 255), -1)
#output_img=(draw_prediction_on_image(frame,keypoints_with_scores,crop_region=determine_crop_region(
#keypoints_with_scores, image_height, image_width),close_figure=False, output_image_height=300))
#output_img = cv2.cvtColor(output_img, cv2.COLOR_RGB2BGR)
# output_img=np.array(output_img)
# print(output_img.shape,'output_img.shape')
#output = np.stack(np.array(output_img), axis=0)
#crop_region = determine_crop_region(keypoints_with_scores, image_height, image_width)
if ret:
crop_region = determine_crop_region(
keypoints_with_scores, image_height, image_width)
output_img = draw_prediction_on_image(frame, keypoints_with_scores, crop_region, close_figure=False, output_image_height=300)
#output = np.stack(np.array(output_img), axis=0)
count1 = 0#condition1 detection cheak
count2 =0
if count <= 29:
keypoints_list.append(z)
count += 1
if count==30:
#print(keypoints_list,'keypoints_list')
#write_to_csv(keypoints_list, "keypoints_list.csv")
default_Avg=np.mean(keypoints_list,axis=0)
print(default_Avg,'default_Avg')
count +=1
if count>30:#有问题需要修改
for i in range(30):
print(count1, 'count1')
if condition1 ==1:
count1 +=1
if count1 ==20:
alarm()
if condition1 ==0:
count1 =0
cancal_alarm()
print(keypoints_with_scores)
#write_to_csv(np.reshape(keypoints_with_scores[0, 0, :, 0:3],(17,3)), 'keypoints_with_scores.csv')
#time.sleep(.100)
print(keypoints_with_scores.shape,"keypoints_with_scores.shape")
cv2.imshow('frame', output_img)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
# 当一切完成时,释放捕获
cap.release()
cv2.destroyAllWindows()
if __name__ == '__main__':
main()