|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": 1, |
| 6 | + "metadata": { |
| 7 | + "collapsed": false |
| 8 | + }, |
| 9 | + "outputs": [], |
| 10 | + "source": [ |
| 11 | + "import math\n", |
| 12 | + "import numpy as np\n", |
| 13 | + "import cv2\n", |
| 14 | + "from PIL import Image" |
| 15 | + ] |
| 16 | + }, |
| 17 | + { |
| 18 | + "cell_type": "code", |
| 19 | + "execution_count": 2, |
| 20 | + "metadata": { |
| 21 | + "collapsed": true |
| 22 | + }, |
| 23 | + "outputs": [], |
| 24 | + "source": [ |
| 25 | + "def calculate_psnr(img1, img2):\n", |
| 26 | + " # img1 and img2 have range [0, 255]\n", |
| 27 | + " img1 = img1.astype(np.float64)\n", |
| 28 | + " img2 = img2.astype(np.float64)\n", |
| 29 | + " mse = np.mean((img1 - img2)**2)\n", |
| 30 | + " if mse == 0:\n", |
| 31 | + " return float('inf')\n", |
| 32 | + " return 20 * math.log10(255.0 / math.sqrt(mse))" |
| 33 | + ] |
| 34 | + }, |
| 35 | + { |
| 36 | + "cell_type": "code", |
| 37 | + "execution_count": 3, |
| 38 | + "metadata": { |
| 39 | + "collapsed": true |
| 40 | + }, |
| 41 | + "outputs": [], |
| 42 | + "source": [ |
| 43 | + "def ssim(img1, img2):\n", |
| 44 | + " C1 = (0.01 * 255)**2\n", |
| 45 | + " C2 = (0.03 * 255)**2\n", |
| 46 | + "\n", |
| 47 | + " img1 = img1.astype(np.float64)\n", |
| 48 | + " img2 = img2.astype(np.float64)\n", |
| 49 | + " kernel = cv2.getGaussianKernel(11, 1.5)\n", |
| 50 | + " window = np.outer(kernel, kernel.transpose())\n", |
| 51 | + "\n", |
| 52 | + " mu1 = cv2.filter2D(img1, -1, window)[5:-5, 5:-5] # valid\n", |
| 53 | + " mu2 = cv2.filter2D(img2, -1, window)[5:-5, 5:-5]\n", |
| 54 | + " mu1_sq = mu1**2\n", |
| 55 | + " mu2_sq = mu2**2\n", |
| 56 | + " mu1_mu2 = mu1 * mu2\n", |
| 57 | + " sigma1_sq = cv2.filter2D(img1**2, -1, window)[5:-5, 5:-5] - mu1_sq\n", |
| 58 | + " sigma2_sq = cv2.filter2D(img2**2, -1, window)[5:-5, 5:-5] - mu2_sq\n", |
| 59 | + " sigma12 = cv2.filter2D(img1 * img2, -1, window)[5:-5, 5:-5] - mu1_mu2\n", |
| 60 | + "\n", |
| 61 | + " ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) *\n", |
| 62 | + " (sigma1_sq + sigma2_sq + C2))\n", |
| 63 | + " return ssim_map.mean()\n", |
| 64 | + "\n", |
| 65 | + "\n", |
| 66 | + "def calculate_ssim(img1, img2):\n", |
| 67 | + " '''calculate SSIM\n", |
| 68 | + " the same outputs as MATLAB's\n", |
| 69 | + " img1, img2: [0, 255]\n", |
| 70 | + " '''\n", |
| 71 | + " if not img1.shape == img2.shape:\n", |
| 72 | + " raise ValueError('Input images must have the same dimensions.')\n", |
| 73 | + " if img1.ndim == 2:\n", |
| 74 | + " return ssim(img1, img2)\n", |
| 75 | + " elif img1.ndim == 3:\n", |
| 76 | + " if img1.shape[2] == 3:\n", |
| 77 | + " ssims = []\n", |
| 78 | + " for i in range(3):\n", |
| 79 | + " ssims.append(ssim(img1, img2))\n", |
| 80 | + " return np.array(ssims).mean()\n", |
| 81 | + " elif img1.shape[2] == 1:\n", |
| 82 | + " return ssim(np.squeeze(img1), np.squeeze(img2))\n", |
| 83 | + " else:\n", |
| 84 | + " raise ValueError('Wrong input image dimensions.')" |
| 85 | + ] |
| 86 | + }, |
| 87 | + { |
| 88 | + "cell_type": "code", |
| 89 | + "execution_count": 4, |
| 90 | + "metadata": { |
| 91 | + "collapsed": false |
| 92 | + }, |
| 93 | + "outputs": [], |
| 94 | + "source": [ |
| 95 | + "def calculate(path1, path2):\n", |
| 96 | + " img1=Image.open(path1)\n", |
| 97 | + " img2=Image.open(path2)\n", |
| 98 | + "\n", |
| 99 | + " img1_array = np.array(img1)\n", |
| 100 | + " img2_array = np.array(img2)\n", |
| 101 | + "\n", |
| 102 | + " result_psnr = calculate_psnr(img1_array,img2_array)\n", |
| 103 | + " result_ssim = calculate_ssim(img1_array, img2_array)\n", |
| 104 | + "\n", |
| 105 | + " print('PSNR: {}'.format(result_psnr))\n", |
| 106 | + " print('SSIM: {}'.format(result_ssim))" |
| 107 | + ] |
| 108 | + }, |
| 109 | + { |
| 110 | + "cell_type": "markdown", |
| 111 | + "metadata": {}, |
| 112 | + "source": [ |
| 113 | + "**🅰path1 为超分结果图** \n", |
| 114 | + "**🅱path2 为GT图**" |
| 115 | + ] |
| 116 | + }, |
| 117 | + { |
| 118 | + "cell_type": "code", |
| 119 | + "execution_count": 5, |
| 120 | + "metadata": { |
| 121 | + "collapsed": false |
| 122 | + }, |
| 123 | + "outputs": [ |
| 124 | + { |
| 125 | + "name": "stdout", |
| 126 | + "output_type": "stream", |
| 127 | + "text": [ |
| 128 | + "PSNR: 28.941417753051944\n", |
| 129 | + "SSIM: 0.8072565770834261\n" |
| 130 | + ] |
| 131 | + } |
| 132 | + ], |
| 133 | + "source": [ |
| 134 | + "path1 = r\"D:\\A_result_compare\\HuangRW.tif\"\n", |
| 135 | + "path2 = r\"D:\\GraduationProjectBackUp\\Result_compare\\95\\95-2048pix-speed3-ave1.tif\" \n", |
| 136 | + "\n", |
| 137 | + "calculate(path1, path2)" |
| 138 | + ] |
| 139 | + }, |
| 140 | + { |
| 141 | + "cell_type": "code", |
| 142 | + "execution_count": null, |
| 143 | + "metadata": { |
| 144 | + "collapsed": true |
| 145 | + }, |
| 146 | + "outputs": [], |
| 147 | + "source": [] |
| 148 | + } |
| 149 | + ], |
| 150 | + "metadata": { |
| 151 | + "anaconda-cloud": {}, |
| 152 | + "kernelspec": { |
| 153 | + "display_name": "Python [default]", |
| 154 | + "language": "python", |
| 155 | + "name": "python3" |
| 156 | + }, |
| 157 | + "language_info": { |
| 158 | + "codemirror_mode": { |
| 159 | + "name": "ipython", |
| 160 | + "version": 3 |
| 161 | + }, |
| 162 | + "file_extension": ".py", |
| 163 | + "mimetype": "text/x-python", |
| 164 | + "name": "python", |
| 165 | + "nbconvert_exporter": "python", |
| 166 | + "pygments_lexer": "ipython3", |
| 167 | + "version": "3.5.6" |
| 168 | + } |
| 169 | + }, |
| 170 | + "nbformat": 4, |
| 171 | + "nbformat_minor": 1 |
| 172 | +} |
0 commit comments