Skip to content

Commit 13dd4e7

Browse files
authored
Add files via upload
1 parent 7740388 commit 13dd4e7

File tree

1 file changed

+122
-0
lines changed

1 file changed

+122
-0
lines changed

Pretreatment/compare_normalization.py

+122
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,122 @@
1+
'''
2+
@author: Gqq
3+
@date: 2020/12/01
4+
@use: compare normalize and no-normalize
5+
'''
6+
import torch
7+
import torch.nn as nn
8+
import torch.optim as optim
9+
import torch.nn.functional as F
10+
import torch.utils.data as data
11+
from os import listdir
12+
from os.path import join
13+
from PIL import Image
14+
import torchvision
15+
import torchvision.transforms as transforms
16+
from torchvision.transforms import Compose, ToTensor, Lambda, Normalize
17+
18+
19+
def Dataset_transform():
20+
return Compose([
21+
ToTensor(),
22+
])
23+
24+
def Dataset_transform_norm(imgs):
25+
if imgs == 'LR':
26+
norms = Normalize((0.1815, 0.0378, 0.0000), (0.1599, 0.0896, 1.0000))
27+
elif imgs == 'HR_2':
28+
norms = Normalize((0.1290, 0.0367, 0.0000), (0.1053, 0.0830, 1.0000))
29+
else:
30+
norms = Normalize((0.1058, 0.0366, 0.0000), (0.0906, 0.0841, 1.0000))
31+
return Compose([
32+
ToTensor(),
33+
norms
34+
])
35+
36+
37+
def is_image_file(filename):
38+
return any(filename.endswith(extension) for extension in [".png", ".jpg", ".jpeg", ".tif"])
39+
40+
41+
def load_img(filepath):
42+
img = Image.open(filepath).convert('RGB')
43+
return img
44+
45+
def get_training_set(root):
46+
return DatasetFromFolder(root,
47+
transform=Dataset_transform(),
48+
)
49+
50+
def get_training_set_norm(root, imgs):
51+
return DatasetFromFolder(root,
52+
transform=Dataset_transform_norm(imgs),
53+
)
54+
55+
56+
class DatasetFromFolder(data.Dataset):
57+
def __init__(self, root, transform = None):
58+
super(DatasetFromFolder, self).__init__()
59+
self.image_LRfilenames = [join(root, x) for x in listdir(root) if is_image_file(x)]
60+
self.transform = transform
61+
62+
def __getitem__(self, index):
63+
imgs = load_img(self.image_LRfilenames[index])
64+
65+
if self.transform:
66+
imgs = self.transform(imgs)
67+
68+
return imgs
69+
70+
def __len__(self):
71+
return len(self.image_LRfilenames)
72+
73+
74+
def get_mean_and_std(dataset):
75+
'''Compute the mean and std value of dataset.'''
76+
dataloader = torch.utils.data.DataLoader(dataset, batch_size=1, shuffle=True)
77+
mean = torch.zeros(3)
78+
std = torch.zeros(3)
79+
print('==> Computing mean and std..')
80+
for inputs in dataloader:
81+
82+
for i in range(3):
83+
mean[i] += inputs[:,i,:,:].mean() # 取所有数据的相同通道计算
84+
std[i] += inputs[:,i,:,:].std()
85+
mean.div_(len(dataset))
86+
std.div_(len(dataset))
87+
return mean, std
88+
89+
print('================================before normalize============================')
90+
train_set = get_training_set(r'D:\\A_GraduationProject\\dataset\\DataSet\\train_LR')
91+
mean ,std = get_mean_and_std(train_set)
92+
print('LR:')
93+
print(mean, std)
94+
95+
train_set = get_training_set(r'D:\\A_GraduationProject\\dataset\\DataSet\\train_HR_2\\')
96+
mean ,std = get_mean_and_std(train_set)
97+
print('HR_2:')
98+
print(mean, std)
99+
100+
train_set = get_training_set(r'D:\\A_GraduationProject\\dataset\\DataSet\\train_HR_4\\')
101+
mean ,std = get_mean_and_std(train_set)
102+
print('HR_4:')
103+
print(mean, std)
104+
105+
print('================================After normalize============================')
106+
train_set = get_training_set_norm(r'D:\\A_GraduationProject\\dataset\\DataSet\\train_LR', 'LR')
107+
mean ,std = get_mean_and_std(train_set)
108+
print('LR:')
109+
print(mean, std)
110+
111+
train_set = get_training_set_norm(r'D:\\A_GraduationProject\\dataset\\DataSet\\train_HR_2\\', 'HR_2')
112+
mean ,std = get_mean_and_std(train_set)
113+
print('HR_2:')
114+
print(mean, std)
115+
116+
train_set = get_training_set_norm(r'D:\\A_GraduationProject\\dataset\\DataSet\\train_HR_4\\', 'HR_4')
117+
mean ,std = get_mean_and_std(train_set)
118+
print('HR_4:')
119+
print(mean, std)
120+
121+
122+

0 commit comments

Comments
 (0)