|
| 1 | +''' |
| 2 | +@author: Gqq |
| 3 | +@date: 2020/12/01 |
| 4 | +@use: compare normalize and no-normalize |
| 5 | +''' |
| 6 | +import torch |
| 7 | +import torch.nn as nn |
| 8 | +import torch.optim as optim |
| 9 | +import torch.nn.functional as F |
| 10 | +import torch.utils.data as data |
| 11 | +from os import listdir |
| 12 | +from os.path import join |
| 13 | +from PIL import Image |
| 14 | +import torchvision |
| 15 | +import torchvision.transforms as transforms |
| 16 | +from torchvision.transforms import Compose, ToTensor, Lambda, Normalize |
| 17 | + |
| 18 | + |
| 19 | +def Dataset_transform(): |
| 20 | + return Compose([ |
| 21 | + ToTensor(), |
| 22 | + ]) |
| 23 | + |
| 24 | +def Dataset_transform_norm(imgs): |
| 25 | + if imgs == 'LR': |
| 26 | + norms = Normalize((0.1815, 0.0378, 0.0000), (0.1599, 0.0896, 1.0000)) |
| 27 | + elif imgs == 'HR_2': |
| 28 | + norms = Normalize((0.1290, 0.0367, 0.0000), (0.1053, 0.0830, 1.0000)) |
| 29 | + else: |
| 30 | + norms = Normalize((0.1058, 0.0366, 0.0000), (0.0906, 0.0841, 1.0000)) |
| 31 | + return Compose([ |
| 32 | + ToTensor(), |
| 33 | + norms |
| 34 | + ]) |
| 35 | + |
| 36 | + |
| 37 | +def is_image_file(filename): |
| 38 | + return any(filename.endswith(extension) for extension in [".png", ".jpg", ".jpeg", ".tif"]) |
| 39 | + |
| 40 | + |
| 41 | +def load_img(filepath): |
| 42 | + img = Image.open(filepath).convert('RGB') |
| 43 | + return img |
| 44 | + |
| 45 | +def get_training_set(root): |
| 46 | + return DatasetFromFolder(root, |
| 47 | + transform=Dataset_transform(), |
| 48 | + ) |
| 49 | + |
| 50 | +def get_training_set_norm(root, imgs): |
| 51 | + return DatasetFromFolder(root, |
| 52 | + transform=Dataset_transform_norm(imgs), |
| 53 | + ) |
| 54 | + |
| 55 | + |
| 56 | +class DatasetFromFolder(data.Dataset): |
| 57 | + def __init__(self, root, transform = None): |
| 58 | + super(DatasetFromFolder, self).__init__() |
| 59 | + self.image_LRfilenames = [join(root, x) for x in listdir(root) if is_image_file(x)] |
| 60 | + self.transform = transform |
| 61 | + |
| 62 | + def __getitem__(self, index): |
| 63 | + imgs = load_img(self.image_LRfilenames[index]) |
| 64 | + |
| 65 | + if self.transform: |
| 66 | + imgs = self.transform(imgs) |
| 67 | + |
| 68 | + return imgs |
| 69 | + |
| 70 | + def __len__(self): |
| 71 | + return len(self.image_LRfilenames) |
| 72 | + |
| 73 | + |
| 74 | +def get_mean_and_std(dataset): |
| 75 | + '''Compute the mean and std value of dataset.''' |
| 76 | + dataloader = torch.utils.data.DataLoader(dataset, batch_size=1, shuffle=True) |
| 77 | + mean = torch.zeros(3) |
| 78 | + std = torch.zeros(3) |
| 79 | + print('==> Computing mean and std..') |
| 80 | + for inputs in dataloader: |
| 81 | + |
| 82 | + for i in range(3): |
| 83 | + mean[i] += inputs[:,i,:,:].mean() # 取所有数据的相同通道计算 |
| 84 | + std[i] += inputs[:,i,:,:].std() |
| 85 | + mean.div_(len(dataset)) |
| 86 | + std.div_(len(dataset)) |
| 87 | + return mean, std |
| 88 | + |
| 89 | +print('================================before normalize============================') |
| 90 | +train_set = get_training_set(r'D:\\A_GraduationProject\\dataset\\DataSet\\train_LR') |
| 91 | +mean ,std = get_mean_and_std(train_set) |
| 92 | +print('LR:') |
| 93 | +print(mean, std) |
| 94 | + |
| 95 | +train_set = get_training_set(r'D:\\A_GraduationProject\\dataset\\DataSet\\train_HR_2\\') |
| 96 | +mean ,std = get_mean_and_std(train_set) |
| 97 | +print('HR_2:') |
| 98 | +print(mean, std) |
| 99 | + |
| 100 | +train_set = get_training_set(r'D:\\A_GraduationProject\\dataset\\DataSet\\train_HR_4\\') |
| 101 | +mean ,std = get_mean_and_std(train_set) |
| 102 | +print('HR_4:') |
| 103 | +print(mean, std) |
| 104 | + |
| 105 | +print('================================After normalize============================') |
| 106 | +train_set = get_training_set_norm(r'D:\\A_GraduationProject\\dataset\\DataSet\\train_LR', 'LR') |
| 107 | +mean ,std = get_mean_and_std(train_set) |
| 108 | +print('LR:') |
| 109 | +print(mean, std) |
| 110 | + |
| 111 | +train_set = get_training_set_norm(r'D:\\A_GraduationProject\\dataset\\DataSet\\train_HR_2\\', 'HR_2') |
| 112 | +mean ,std = get_mean_and_std(train_set) |
| 113 | +print('HR_2:') |
| 114 | +print(mean, std) |
| 115 | + |
| 116 | +train_set = get_training_set_norm(r'D:\\A_GraduationProject\\dataset\\DataSet\\train_HR_4\\', 'HR_4') |
| 117 | +mean ,std = get_mean_and_std(train_set) |
| 118 | +print('HR_4:') |
| 119 | +print(mean, std) |
| 120 | + |
| 121 | + |
| 122 | + |
0 commit comments