-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcalculate_mean_std.py
87 lines (66 loc) · 2.42 KB
/
calculate_mean_std.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
'''
@author: Gqq
@date: 2020/12/01
@use: for calculate the mean and std about RGB images
'''
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import torch.utils.data as data
from os import listdir
from os.path import join
from PIL import Image
import torchvision
import torchvision.transforms as transforms
from torchvision.transforms import Compose, ToTensor, Lambda
def Dataset_transform():
return Compose([
ToTensor(),
])
def is_image_file(filename):
return any(filename.endswith(extension) for extension in [".png", ".jpg", ".jpeg", ".tif"])
def load_img(filepath):
img = Image.open(filepath).convert('RGB')
return img
def get_training_set(root):
return DatasetFromFolder(root,
transform=Dataset_transform(),
)
class DatasetFromFolder(data.Dataset):
def __init__(self, root, transform = None):
super(DatasetFromFolder, self).__init__()
self.image_LRfilenames = [join(root, x) for x in listdir(root) if is_image_file(x)]
self.transform = transform
def __getitem__(self, index):
imgs = load_img(self.image_LRfilenames[index])
if self.transform:
imgs = self.transform(imgs)
return imgs
def __len__(self):
return len(self.image_LRfilenames)
def get_mean_and_std(dataset):
'''Compute the mean and std value of dataset.'''
dataloader = torch.utils.data.DataLoader(dataset, batch_size=1, shuffle=True)
mean = torch.zeros(3)
std = torch.zeros(3)
print('==> Computing mean and std..')
for inputs in dataloader:
for i in range(3):
mean[i] += inputs[:,i,:,:].mean() # 取所有数据的相同通道计算
std[i] += inputs[:,i,:,:].std()
mean.div_(len(dataset))
std.div_(len(dataset))
return mean, std
train_set = get_training_set(r'D:\\GraduationProjectBackUp\\DataSet_less\\train_LR\\')
mean ,std = get_mean_and_std(train_set)
print('LR:')
print(mean, std)
train_set = get_training_set(r'D:\\GraduationProjectBackUp\\DataSet_less\\train_HR_2\\')
mean ,std = get_mean_and_std(train_set)
print('HR_2:')
print(mean, std)
train_set = get_training_set(r'D:\\GraduationProjectBackUp\\DataSet_less\\train_HR_4\\')
mean ,std = get_mean_and_std(train_set)
print('HR_4:')
print(mean, std)