@@ -62,7 +62,6 @@ def prepare_workloads():
62
62
OpArgMngr .add_workload ("nan_to_num" , pool ['2x2' ])
63
63
OpArgMngr .add_workload ("tri" , 2 , 3 , 4 )
64
64
OpArgMngr .add_workload ("tensordot" , pool ['2x2' ], pool ['2x2' ], ((1 , 0 ), (0 , 1 )))
65
- OpArgMngr .add_workload ("kron" , pool ['2x2' ], pool ['2x2' ])
66
65
OpArgMngr .add_workload ("cumsum" , pool ['3x2' ], axis = 0 , out = pool ['3x2' ])
67
66
OpArgMngr .add_workload ("random.shuffle" , pool ['3' ])
68
67
OpArgMngr .add_workload ("equal" , pool ['2x2' ], pool ['2x2' ])
@@ -100,11 +99,14 @@ def prepare_workloads():
100
99
OpArgMngr .add_workload ("trace" , pool ['2x2' ])
101
100
OpArgMngr .add_workload ("transpose" , pool ['2x2' ])
102
101
OpArgMngr .add_workload ("split" , pool ['3x3' ], (0 , 1 , 2 ), axis = 1 )
102
+ OpArgMngr .add_workload ("vstack" , (pool ['3x3' ], pool ['3x3' ], pool ['3x3' ]))
103
103
OpArgMngr .add_workload ("argmax" , pool ['3x2' ], axis = - 1 )
104
104
OpArgMngr .add_workload ("argmin" , pool ['3x2' ], axis = - 1 )
105
105
OpArgMngr .add_workload ("atleast_1d" , pool ['2' ], pool ['2x2' ])
106
106
OpArgMngr .add_workload ("atleast_2d" , pool ['2' ], pool ['2x2' ])
107
107
OpArgMngr .add_workload ("atleast_3d" , pool ['2' ], pool ['2x2' ])
108
+ OpArgMngr .add_workload ("argsort" , pool ['3x2' ], axis = - 1 )
109
+ OpArgMngr .add_workload ("sort" , pool ['3x2' ], axis = - 1 )
108
110
OpArgMngr .add_workload ("indices" , dimensions = (1 , 2 , 3 ))
109
111
OpArgMngr .add_workload ("subtract" , pool ['2x2' ], pool ['2x2' ])
110
112
OpArgMngr .add_workload ("multiply" , pool ['2x2' ], pool ['2x2' ])
@@ -115,6 +117,10 @@ def prepare_workloads():
115
117
OpArgMngr .add_workload ("power" , pool ['2x2' ], pool ['2x2' ])
116
118
OpArgMngr .add_workload ("lcm" , pool ['2x2' ].astype ('int32' ), pool ['2x2' ].astype ('int32' ))
117
119
OpArgMngr .add_workload ("diff" , pool ['2x2' ], n = 1 , axis = - 1 )
120
+ OpArgMngr .add_workload ("inner" , pool ['2x2' ], pool ['2x2' ])
121
+ OpArgMngr .add_workload ("random.multinomial" , n = 2 , pvals = [1 / 6. ]* 6 , size = (2 ,2 ))
122
+ OpArgMngr .add_workload ("random.rand" , 3 , 2 )
123
+ OpArgMngr .add_workload ("random.randn" , 2 , 2 )
118
124
OpArgMngr .add_workload ("nonzero" , pool ['2x2' ])
119
125
OpArgMngr .add_workload ("tril" , pool ['2x2' ], k = 0 )
120
126
OpArgMngr .add_workload ("random.choice" , pool ['2' ], size = (2 , 2 ))
@@ -144,9 +150,6 @@ def prepare_workloads():
144
150
OpArgMngr .add_workload ("random.logistic" , loc = 2 , scale = 2 , size = (2 ,2 ))
145
151
OpArgMngr .add_workload ("random.gumbel" , loc = 2 , scale = 2 , size = (2 ,2 ))
146
152
OpArgMngr .add_workload ("where" , pool ['2x3' ], pool ['2x3' ], pool ['2x1' ])
147
- OpArgMngr .add_workload ("fmax" , pool ['2x2' ], pool ['2x2' ])
148
- OpArgMngr .add_workload ("fmin" , pool ['2x2' ], pool ['2x2' ])
149
- OpArgMngr .add_workload ("fmod" , pool ['2x2' ], pool ['2x2' ])
150
153
OpArgMngr .add_workload ("may_share_memory" , pool ['2x3' ][:0 ], pool ['2x3' ][:1 ])
151
154
OpArgMngr .add_workload ('squeeze' , pool ['2x2' ], axis = None )
152
155
OpArgMngr .add_workload ("pad" , pool ['2x2' ], pad_width = ((1 ,2 ),(1 ,2 )), mode = "constant" )
0 commit comments