-
Notifications
You must be signed in to change notification settings - Fork 30
/
Copy pathspgrambw.m
669 lines (646 loc) · 26 KB
/
spgrambw.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
function [t,f,b]=spgrambw(s,fs,varargin)
%SPGRAMBW Draw spectrogram [T,F,B]=(s,fs,mode,bw,fmax,db,tinc,ann)
%
% Usage: spgrambw(s,fs,'pJcw') % Plot spectrogram with my favourite set of options
%
% For examples of the many options available see:
% http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/tutorial/spgrambw/spgram_tut.pdf
%
% Inputs: S speech signal, or single-sided power spectrum array, S(NT,NF), in power per Hz
% FS sample fequency (Hz) or [FS T1] where T1 is the time of the first sample
% or, if s is a matrix, [FS T1 FINC F1] where FS is the frame rate, T1 is
% the time of the first sample, FINC is the frequency increment and F1 the
% frequency of the first column.
% MODE optional character string specifying options (see list below)
% BW bandwidth resolution in Hz (DFT window length = 1.81/BW)[default: 200]
% FMAX frequency range [Fmin Fstep Fmax]. If Fstep is omitted
% it is taken to be (Fmax-Fmin)/257, if Fmin is also omitted it is taken
% to be 0 (or 20Hz for mode l), if all three are omitted Fmax is taken to be FS/2.
% If modes m, b, e or l are specified then the units are in mel, bark or erb or
% log10(Hz); this can be over-ridden by the 'h' option.
% DB either dB-range or [dB-min dB-max] [default: 40]
% TINC output frame increment in seconds [0 or missing uses default=0.45/BW]
% or [TFIRST TLAST] or [TFIRST TINC TLAST] where TFIRST/TLAST are the times
% of first/last frames
% ANN annotation cell array: each row contains either
% {time 'text-string' 'font'} or {[t_start t_end] 'text-string' 'font'} where
% the time value is in seconds with s(n) at time offset+n/fs. The font column can
% omitted in which case the system font will be used. MATLAB cannot cope with
% unicode so I recommend the SILDoulosIPA (serifed) or SILSophiaIPA (sans) fonts
% for phonetic symbols; these are now a little hard to find.
%
% Outputs: T(NT) time axis values (in seconds). Input sample s(n) is at time offset+n/fs.
% F(NF) frequency axis values in Hz or, unless mode=H, other selected frequency units
% according to mode: m=mel, l=log10(Hz), b=bark,e=erb-rate
% B(NT,NF) spectrogram values in power (or clipped dB values if 'd' option given)
%
% MODE: 'p' = output power per decade rather than power per Hz [preemphasis]
% 'P' = output power per mel/bark/erb according to y axis scaling
% 'd' = output B array is in dB rather than power
% 'D' = clip the output B array to the limits specified by the "db" input
%
% 'm' = mel scale
% 'b' = bark scale
% 'e' = erb scale
% 'l' = log10 Hz frequency scale
% 'f' = label frequency axis in Hz rather than mel/bark/...
%
% 'h' = units of the FMAX input are in Hz instead of mel/bark
% [in this case, the Fstep parameter is used only to determine
% the number of filters]
% 'H' = express the F output in Hz instead of mel/bark/...
%
% 'g' = draw a graph even if output arguments are present
% 'j' = jet colourmap
% 'J' = "thermal" colourmap that is linear in grayscale. Based on Oliver Woodford's
% real2rgb at http://www.mathworks.com/matlabcentral/fileexchange/23342
% 'i' = inverted colourmap (white background)
% 'c' = include a colourbar as an intensity scale
% 'w' = draw the speech waveform above the spectrogram
% 'a' = centre-align annotations rather than left-aligning them
% 't' = add time markers with annotations
%
% The BW input gives the 6dB bandwidth of the Hamming window used in the analysis.
% Equal amplitude frequency components are guaranteed to give separate peaks if they
% are this far apart. This value also determines the time resolution: the window length is
% 1.81/BW and the low-pass filter applied to amplitude modulations has a 6-dB bandwidth of
% BW/2 Hz.
%
% The units are power per Hz unless the u
% option is given in which case power per displayed unit is used
% or power per decade for the l option.
%%%% BUGS %%%%%%
% * allow ANN rows to be a mixture of intervals and instants
% * allow multiple ANN rows
% * Do not use triangular interpolation if the output frequencies are the same as an FFT
% * Place as many subticks as will fit beyond the last tick with the 'f' option
% * Use a special subtick pattern between ticks that are powers of 10 using the 'f' option
% * Future options:
% ['q' = constant q transform]
% ['k' = add a piano keyboard to the frequency scale]
% ['z' = use a bipolar colourmap for a matrix input with negative values]
% Copyright (C) Mike Brookes 1997-2011
% Version: $Id: spgrambw.m 713 2011-10-16 14:45:43Z dmb $
%
% VOICEBOX is a MATLAB toolbox for speech processing.
% Home page: http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You can obtain a copy of the GNU General Public License from
% http://www.gnu.org/copyleft/gpl.html or by writing to
% Free Software Foundation, Inc.,675 Mass Ave, Cambridge, MA 02139, USA.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
persistent tcmap
if isempty(tcmap)
% modified thermal with better grayscale linearity
tcmap=[ 0 0 0; 7 0 17; 14 0 33; 21 0 50; 29 0 67; 36 0 84; 43 0 100; 50 0 117;
57 0 134; 64 0 150; 72 0 167; 80 3 164; 89 7 156; 97 11 149; 106 15 142; 114 19 134;
123 23 127; 131 27 119; 140 31 112; 149 35 105; 157 39 97; 166 43 90; 174 47 82;
183 51 75; 192 55 68; 200 59 60; 209 63 53; 217 67 45; 226 71 38; 234 75 31;
243 79 23; 252 83 16; 255 88 12; 255 95 12; 255 102 11; 255 109 11; 255 116 10;
255 123 10; 255 130 9; 255 137 9; 255 144 8; 255 151 8; 255 158 7; 255 165 7;
255 172 6; 255 179 6; 255 186 5; 255 193 4; 255 200 4; 255 207 3; 255 214 3; 255 221 2;
255 228 2; 255 235 1; 255 242 1; 255 249 0; 255 252 22; 255 252 55; 255 253 88;
255 253 122; 255 254 155; 255 254 188; 255 255 222; 255 255 255]/255;
end
if nargin<2
error('Usage: SPGRAMBW(s,fs,mode,bw,fmax,db,tinc)');
end
%SPGRAMBW Draw grey-scale spectrogram [T,F,B]=(s,fs,mode,bw,fmax,db,tinc)
%
% first decode the input arguments
%
if size(s,1)==1
s=s(:); % force to be a column vector (unless it is a matrix)
end
[ns1,ns2]=size(s);
ap=zeros(1,6);
j=2;
if numel(fs)<2
fs(2)=1/fs(1); % first sample or frame is at time 1/fs
end
for i=1:length(varargin)
if ischar(varargin{i})
ap(1)=i;
else
ap(j)=i;
j=j+1;
end
end
if ap(1) && ~isempty(varargin{ap(1)})
mode=varargin{ap(1)};
else
mode=''; % default mode
end
if ap(2) && ~isempty(varargin{ap(2)})
bw=varargin{ap(2)};
else
bw=200;
end
if ap(3) && ~isempty(varargin{ap(3)})
fmax=varargin{ap(3)};
else
fmax=[];
end
if ap(4) && ~isempty(varargin{ap(4)})
db=varargin{ap(4)};
else
db=40;
end
if ap(5) && ~isempty(varargin{ap(5)})
tinc=varargin{ap(5)};
else
tinc=0;
end
switch numel(tinc)
case 1
tinc=[tinc -Inf Inf];
case 2
tinc=[0 tinc];
otherwise
tinc=tinc([2 1 3]);
end
if tinc(1)<=0
tinc(1)=1.81/(4*bw); % default frame increment
end
if ap(6)
ann=varargin{ap(6)};
else
ann=[];
end
% now sort out the mode flags
mdsw=' '; % [yscale preemph]
for i=1:length(mode)
switch mode(i)
case {'l','m','b','e'}
mdsw(1)=mode(i);
case {'p','P'}
mdsw(2)=mode(i);
end
end
if mdsw(2)=='P'
mdsw(2)=mdsw(1); % preemphasis is scaling dependent
end
%
% sort out the frequency axis
%
flmin=30; % min frequency for 'l' option
nfrq=257; % default number of frequency bins
if ns2==1
fnyq=fs(1)/2; % default upper frequency limit is fs/2
else % input is a power spectrum
if numel(fs)<3
fs(3)=fs(1)*0.25; % default increment is 0.25 times frame increment
end
if numel(fs)<4
fs(4)=0; % first freq bin is DC by default
end
fnyq=fs(4)+(ns2-1)*fs(3); % default upper frequency limit is highest supplied frequency
end
if ~numel(fmax) % no explicit frequency range
switch mdsw(1)
case 'l'
fx=linspace(log10(flmin),log10(fnyq),nfrq); % 20 Hz to Nyquist
case 'm'
fx=linspace(0,frq2mel(fnyq),nfrq); % DC to Nyquist
case 'b'
fx=linspace(0,frq2bark(fnyq),nfrq); % DC to Nyquist
case 'e'
fx=linspace(0,frq2erb(fnyq),nfrq); % DC to Nyquist
otherwise % linear Hz scale
fx=(0:nfrq-1)*fnyq/(nfrq-1);
end
else
if any(mode=='h')
switch mdsw(1)
case 'l'
fmaxu=log10(fmax); % 20 Hz to Nyquist
case 'm'
fmaxu=frq2mel(fmax); % DC to Nyquist
case 'b'
fmaxu=frq2bark(fmax); % DC to Nyquist
case 'e'
fmaxu=frq2erb(fmax); % DC to Nyquist
otherwise
fmaxu=fmax; % linear Hz scale
end
else
fmaxu=fmax; % already in the correct units
end
if numel(fmax)<2 % only max value specified
if mdsw(1)=='l'
fx=linspace(log10(flmin),fmaxu,nfrq); % 20 Hz to fmax
else
fx=linspace(0,fmaxu,nfrq); % DC to fmax
end
elseif numel(fmax)<3 % min and max values specified
fx=linspace(fmaxu(1),fmaxu(2),nfrq); % fmin to fmax
else
fmaxu(2)=fmax(2)*(fmaxu(3)-fmaxu(1))/(fmax(3)-fmax(1)); % scale the step size appropriately
fx=fmaxu(1):fmaxu(2):fmaxu(3); % fmin to fmax in steps of finc
nfrq=length(fx);
end
end
switch mdsw(1) % convert the frequency range to Hz
case 'l'
f=10.^fx;
frlab='log_{10}Hz';
frlabf='log';
frq2y=@log10;
y2frq=@(x) 10.^x;
case 'm'
f=mel2frq(fx);
frlab='Mel';
frlabf='Mel';
frq2y=@frq2mel;
y2frq=@mel2frq;
case 'b'
f=bark2frq(fx);
frlab='Bark';
frlabf='Bark';
frq2y=@frq2bark;
y2frq=@bark2frq;
case 'e'
f=erb2frq(fx);
frlab='Erb-rate';
frlabf='Erb';
frq2y=@frq2erb;
y2frq=@erb2frq;
otherwise
f=fx;
frlab='Hz';
frq2y=@(x) x;
y2frq=@(x) x;
end
if ~any(mode=='H')
f=fx; % give output frequencies in native units instead of Hz unless 'H' is specified
end
%
% now calculate the spectrogram
%
if ns2==1 % input is a speech signal vector
winlen = fix(1.81*fs(1)/bw); % window length
win=0.54+0.46*cos((1-winlen:2:winlen)*pi/winlen); % Hamming window
ninc=max(round(tinc(1)*fs(1)),1); % window increment in samples
% we need to take account of minimum freq increment + make it exact if possible
fftlen=pow2(nextpow2(4*winlen)); % enough oversampling to get good interpolation
win=win/sqrt(sum(win.^2)); % ensure window squared sums to unity
ix1=max(round((tinc(2)-fs(2))*fs(1)-(winlen-3)/2),1); % first sample required
ix2=min(ceil((tinc(3)-fs(2))*fs(1)+(winlen+1)/2),ns1); % last sample required
[sf,t]=enframe(s(ix1:ix2),win,ninc);
t=fs(2)+(t+ix1-2)/fs(1); % time axis
b=rfft(sf,fftlen,2);
b=b.*conj(b)*2/fs(1); % Power per Hz
b(:,1)=b(:,1)*0.5; % correct for no negative zero frequency to double the power
b(:,end)=b(:,end)*0.5; % correct for no negative nyquist frequency to double the power
fb=(0:fftlen/2)*fs(1)/fftlen; % fft bin frequencies
fftfs=fs(1);
else
b=s;
t=fs(2)+(0:ns1-1)/fs(1); % frame times
fb=fs(4)+(0:ns2-1)*fs(3);
fftlen=[ns2 fs(3) fs(4)]; % for filtbankm: ns2=# input freq bins, freq increment (Hz), first bin freq (Hz)
fftfs=0;
% fftlen=2*(ns2-1); % assume an even length fft
% fftfs=fftlen*fs(3);
end
nfr=numel(t); % number of frames
dblab='Power/Hz';
switch mdsw(2)
case {'p','l'}
b=b.*repmat(fb*log(10),nfr,1); % convert to power per decade
dblab='Power/Decade';
case 'm'
b=b.*repmat((1+fb/700)*log(1+1000/700)/1000,nfr,1); % convert to power per mel
dblab='Power/Mel';
case 'b'
b=b.*repmat((1960+fb).^2/52547.6,nfr,1); % convert to power per bark
dblab='Power/Bark';
case 'e'
b=b.*repmat(6.23*fb.^2 + 93.39*fb + 28.52,nfr,1); % convert to power per erb
dblab='Power/Erb-rate';
end
%
% Now map onto the desired frequency scale
%
b=b*filtbankm(nfrq,fftlen,fftfs,fx(1),fx(end),['cush' mdsw(1)])';
if ~nargout || any(mode=='g') || any(mode=='d')
if numel(db)<2 % find clipping limits
plim=max(b(:))*[0.1^(0.1*db) 1];
else
plim=10.^(0.1*db(1:2));
end
if plim(2)<=0
plim(2)=1;
end
if plim(1)<=0 || plim(1)==plim(2)
plim(1)=0.1*plim(2);
end
if ~nargout || any(mode=='g')
bd=10*log10(b); % save an unclipped log version for plotting
end
if any(mode=='D')
b=min(max(b,plim(1)),plim(2)); % clip the output
end
if any(mode=='d')
b=10*log10(b); % output the dB version
end
end
% now plot things
if ~nargout || any(mode=='g')
cla; % clear current axis
imagesc(t,fx,bd');
axis('xy');
set(gca,'tickdir','out','clim',10*log10(plim));
if any(mode=='j')
colormap('jet');
map=colormap;
elseif any(mode=='J')
map=tcmap;
else
map = repmat((0:63)'/63,1,3);
end
if any(mode=='i') % 'i' option = invert the colourmap
map=map(64:-1:1,:);
end
colormap(map);
if any(mode=='c') % 'c' option = show a colourbar
colorbar;
cblabel([dblab ' (dB)']);
end
%
% Now check if annotations or a waveform are required
%
dotaw=[((any(mode=='t') && size(ann,2)>1) || size(ann,2)==1) size(ann,2)>1 (any(mode=='w') && ns2==1)];
ylim=get(gca,'ylim');
if any(dotaw)
yrange = ylim(2)-ylim(1);
zlim=ylim;
toptaw=cumsum([0 dotaw.*[0.05 0.05 0.1]]*yrange)+ylim(2);
zlim(2)=toptaw(4);
set(gca,'ylim',zlim,'color',map(1,:));
if dotaw(3) % Plot the waveform
smax=max(s(:));
smin=min(s(:));
srange=smax-smin;
hold on
plot(fs(2)+(0:length(s)-1)/fs(1),(s-smin)/srange*0.9*(toptaw(4)-toptaw(3))+toptaw(3),'color',map(48,:))
hold off
end
if dotaw(1) || dotaw(2)
tmk=cell2mat(ann(:,1));
tmksel=tmk(:,1)<=t(end) & tmk(:,end)>=t(1);
yix=1+[tmk(tmksel,1)<t(1) ones(sum(tmksel),2) tmk(tmksel,end)>t(end)]';
tmk(:,1)=max(tmk(:,1),t(1)); % clip to axis limits
tmk(:,end)=min(tmk(:,end),t(end));
end
if dotaw(1) && any(tmksel) % draw time markers
ymk=toptaw(1:2)*[0.8 0.4;0.2 0.6];
switch size(tmk,2)
case 0
case 1 % isolated marks
hold on
plot([tmk(tmksel) tmk(tmksel)]',repmat(ymk',1,sum(tmksel)),'color',map(48,:));
hold off
otherwise % draw durations
hold on
plot(tmk(tmksel,[1 1 2 2])',ymk(yix),'color',map(48,:));
hold off
end
end
if dotaw(2) && any(tmksel) % print annotations
if any(mode=='a')
horal='center';
tmk=(tmk(:,1)+tmk(:,end))*0.5;
else
horal='left';
tmk=tmk(:,1);
end
if size(ann,2)>2
font='Arial';
for i=1:size(ann,1)
if tmksel(i)
if ~isempty(ann{i,3})
font = ann{i,3};
end
text(tmk(i),toptaw(2),ann{i,2},'color',map(48,:),'fontname',font,'VerticalAlignment','baseline','HorizontalAlignment',horal);
end
end
else
for i=1:size(ann,1)
if tmksel(i)
text(tmk(i),toptaw(2),ann{i,2},'color',map(48,:),'VerticalAlignment','baseline','HorizontalAlignment',horal);
end
end
end
end
end
xlabel(['Time (' xticksi 's)']);
if any(mode=='f') && ~strcmp(frlab,'Hz')
ylabel([frlabf '-scaled frequency (Hz)']);
ytickhz(frq2y,y2frq);
else
ylabel(['Frequency (' yticksi frlab ')']);
end
ytick=get(gca,'YTick');
ytickl=get(gca,'YTickLabel');
msk=ytick<=ylim(2);
if any(~msk)
set(gca,'YTick',ytick(msk),'YTickLabel',ytickl(msk));
end
end
function ytickhz(frq2y,y2frq)
% label non linear y frequency axis
%
% Bugs/Suggestions:
% * Add a penalty for large numbers (e.g. 94 is less "round" than 11)
% * possibly add subticks at 1:2:5 if boundaries are 1 and 10
% * could treat subtick allocation specially if bounding lables are both powers of 10
% and work in log spacing rather than spacing directly
% algorithm constants
seps=[0.4 1 3 6]; % spacings: (a) min subtick, (b) min tick, (c) min good tick, (d) max good tick
ww=[0.5 0.6 0.8 0.1 0.3 0.3 0.2]; % weight for (a) last digit=5, (b) power of 10, (c) power of 1000, (d) equal spacing, (e) 1:2:5 labels (f) <seps(3) (g) >seps(4)
nbest=10; % number of possibilities to track
prefix={'y','z','a','f','p','n','�','m','','k','M','G','T','P','E','Z','Y'};
ah=gca;
getgca=get(ah); % Get original axis properties
set(ah,'Units','points','FontUnits','points');
getgcac=get(ah); % Get axis properties in points units
set(ah,'Units',getgca.Units,'FontUnits',getgca.FontUnits); % return to original values
ylim=getgca.YLim;
yrange=ylim*[-1;1];
chsz= yrange*getgcac.FontSize/getgcac.Position(4); % char height in Y-units
% divide the y-axis up into bins containing at most one label each
maxl=ceil(2*yrange/chsz); % max number of labels
% candidate array [cand(:,[1 2])/1000 cand(:,5) cand(:,6)/1000 cand(:,[7 8])]
% 1,2=y limits, 3,4=log limits, 5=Hz, 6=cost, 7=mantissa, 8=exponent, 9=sig digits, 10=y-position
cand=zeros(maxl+2,10);
yinc=(yrange+chsz*0.0002)/maxl; % bin spacing (allowing for a tiny bit to ensure the ends are included)
cand(2:end-1,2)=ylim(1)+yinc*(1:maxl)'-chsz*0.0001;
cand(3:end-1,1)=cand(2:end-2,2);
cand(2,1)=cand(2,2)-yinc;
cand(2:end-1,1:2)=y2frq(max(cand(2:end-1,1:2),0));
% find the "roundest" number in each interval
% first deal with intervals containing zero
cand([1 maxl+2],6)=-1;
cand(2,9)=(cand(2,1)<=0); % mask out interval contaiing zero
cand(2,6)=-cand(2,9);
msk=cand(:,6)==0; % find rows without a cost yet
cand(msk,3:4)=log10(cand(msk,1:2));
% find powers of 1000
loglim=ceil(cand(:,3:4)/3);
msk=loglim(:,2)>loglim(:,1);
if any(msk)
xp=loglim(msk,1);
wuns=ones(length(xp),1);
cand(msk,5:9)=[1000.^xp wuns-ww(3) wuns 3*xp wuns];
end
% find powers of 10
loglim=ceil(cand(:,3:4));
msk=~msk & (loglim(:,2)>loglim(:,1));
if any(msk)
xp=loglim(msk,1);
wuns=ones(length(xp),1);
cand(msk,5:9)=[10.^xp wuns-ww(2) wuns xp wuns];
end
% find value with fewest digits
msk=cand(:,6)==0; % find rows without a cost yet
maxsig=1-floor(log10(10^min(cand(msk,3:4)*[-1;1])-1)); % maximum number of significant figures to consider
pten=10.^(0:maxsig-1); % row vector of powers of ten
noten=10.^(-floor(cand(msk,3))); % exponent of floating point representation of lower bound
sigdig=sum((ceil(cand(msk,2).*noten*pten)-ceil(cand(msk,1).*noten*pten))==0,2); % number of digits common to the interval bounds
lowman=ceil(cand(msk,1).*noten.*10.^sigdig);
midman=10*floor(lowman/10)+5;
highman=ceil(cand(msk,2).*noten.*10.^sigdig);
mskman=midman>=lowman & midman<highman; % check if we can include a manitssa ending in 5
lowman(mskman)=midman(mskman);
cand(msk,6:9)=[sigdig+1 lowman floor(cand(msk,3))-sigdig sigdig+1];
cand(msk,5)=cand(msk,7).*10.^cand(msk,8);
cand(msk,6)=cand(msk,6)-(mod(cand(msk,7),10)==5)*ww(1);
cand(2:end-1,10)=frq2y(cand(2:end-1,5));
cand([1 maxl+2],10)=ylim + seps(4)*chsz*[-1 1]; % put imaginary labels at the optimum spacing beyond the axes
% [cand(:,[1 2 5])/1000 cand(:,[6 7 8 9])]
% Now do n-best DP to find the best sequence
ratint=[8/5 25/10 0 0 4/3];
costs=repmat(Inf,nbest,maxl+2); % cumulative path costs
costs(1,1)=0; % starting node only has one option
prev=ones(nbest,maxl+2); % previous label in path
labcnt=zeros(nbest,maxl+2); % number of labels in path
for i=2:maxl+2
ntry=nbest*(i-1); % number of previous options
prevc=reshape(repmat(1:i-1,nbest,1),ntry,1); % previous candidate
prevprev=1+floor((prev(1:ntry)'-1)/nbest); % previous previous candidate
msk=prevprev>1+(maxl+2)*(i==maxl+2); % mask for label triplets
labcnti=labcnt(1:ntry)+1;
disti=(cand(i,10)-cand(prevc,10))/chsz; % distance to previous label in characters
costa=max(seps(3)-disti,0)*ww(6)+max(disti-seps(4),0)*ww(7);
incri=(cand(i,5)-cand(prevc,5)); % label increment
incrj=(cand(i,5)-cand(prevprev,5)); % double label increment
if any(msk)
costa(msk)=costa(msk)- ww(4)*(abs(incrj(msk)-2*incri(msk))<0.01*incri(msk));
if cand(i,7)==1 || cand(i,7)==2 || cand(i,7)==5 % look for labels 1:2:5
costa(msk)=costa(msk)- ww(5)*(abs(incrj(msk)-ratint(cand(i,7))*incri(msk))<0.01*incri(msk));
end
end
costa(disti<seps(2))=Inf;
costi=(costs(1:ntry).*max(labcnt(1:ntry),1)+costa'+cand(i,6))./labcnti;
[sc,isc]=sort(costi);
isc=isc(1:nbest);
costs(:,i)=sc(1:nbest)';
prev(:,i)=isc';
labcnt(:,i)=labcnti(isc)';
end
% now traceback the best sequence
% fprintf('Traceback\n\n');
ichoose=0;
labchoose=[];
for i=1:nbest
if labcnt(i,maxl+2)>1 && costs(i,maxl+2)<Inf
lablist=zeros(labcnt(i,maxl+2)-1,1);
k=prev(i,maxl+2);
for j=labcnt(i,maxl+2)-1:-1:1
lablist(j)=1+floor((k-1)/nbest);
k=prev(k);
end
% fprintf('Cost=%8.2f :',costs(i,maxl+2));
% fprintf(' %g',cand(lablist,5))
% fprintf('\n');
if ~ichoose || labcnt(ichoose,maxl+2)==1
ichoose=i;
labchoose=lablist;
end
end
end
% now create the labels
ntick=length(labchoose);
% sort out the subticks
subpos=[];
if ntick>=2
for i=1:ntick-1
clj=cand(labchoose(i:i+1),:);
sprec=min(clj(1,8)+100*(clj(1,7)==0),clj(2,8)); % subtick precision
spos=(clj(1,7)*10^(clj(1,8)-sprec):clj(2,7)*10^(clj(2,8)-sprec))*10^sprec;
nsub=length(spos);
if nsub==2
spos=spos*[1 0.5 0;0 0.5 1];
nsub=3;
end
if nsub>=3
yspos=frq2y(spos);
for kk=1:3 % try various subdivisions: every 1, 2 or 5
k=kk+2*(kk==3); % 1, 2 and 5
if 2*k<=nsub-1 && ~mod(nsub-1,k) % must divide exactly into nsub
if all((yspos(1+k:k:nsub)-yspos(1:k:nsub-k))>=(seps(1)*chsz)) % check they all fit in
subpos=[subpos yspos(1+k:k:nsub-k)];
if i==1
spos=(ceil(cand(2,1)/10^sprec):clj(1,7)*10^(clj(1,8)-sprec))*10^sprec;
nsub=length(spos);
yspos=frq2y(spos);
if nsub>=k+1 && all((yspos(nsub:-k:1+k)-yspos(nsub-k:-k:1))>=(seps(1)*chsz))
subpos=[subpos yspos(nsub-k:-k:1)];
end
elseif i==ntick-1
spos=(clj(2,7)*10^(clj(2,8)-sprec):floor(cand(end-1,2)/10^sprec))*10^sprec;
nsub=length(spos);
yspos=frq2y(spos);
if nsub>=k+1 && all((yspos(1+k:k:nsub)-yspos(1:k:nsub-k))>=(seps(1)*chsz))
subpos=[subpos yspos(1+k:k:nsub)];
end
end
break;
end
end
end
end
end
end
nsub=length(subpos);
tickpos=[cand(labchoose,10); subpos'];
ticklab=cell(ntick+nsub,1);
sipref=min(max(floor((sum(cand(labchoose,8:9),2)-1)/3),-8),8);
nzadd=cand(labchoose,8)-3*sipref; % trailing zeros to add
digzer=cand(labchoose,7).*10.^max(nzadd,0); % label digits including trailing zeros
ndleft=cand(labchoose,9)+nzadd; % digits to the left of the decimal point
for i=1:ntick
tickint=num2str(digzer(i));
if nzadd(i)<0
tickint=[tickint(1:ndleft(i)) '.' tickint(1+ndleft(i):end)];
end
ticklab{i} = sprintf('%s%s',tickint,prefix{sipref(i)+9});
end
for i=ntick+1:ntick+nsub
ticklab{i}='';
end
[tickpos,ix]=sort(tickpos);
ticklab=ticklab(ix);
set(ah,'YTick',tickpos','YTickLabel',ticklab);