-
Notifications
You must be signed in to change notification settings - Fork 26
/
gui_nerf.py
392 lines (284 loc) · 14.6 KB
/
gui_nerf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
import torch
import argparse
import numpy as np
import dearpygui.dearpygui as dpg
from scipy.spatial.transform import Rotation as R
from nerf.provider import NeRFDataset
from nerf.utils import *
class OrbitCamera:
def __init__(self, W, H, r=2, fovy=30):
self.W = W
self.H = H
self.radius = r # camera distance from center
self.fovy = fovy
self.center = np.array([0, 0, 0], dtype=np.float32) # look at this point
self.rot = R.from_quat([0, 0, 0, 1]) # scalar last
self.up = np.array([0, 1, 0], dtype=np.float32) # need to be normalized!
# pose
@property
def pose(self):
# first move camera to radius
res = np.eye(4, dtype=np.float32)
res[2, 3] -= self.radius
# rotate
rot = np.eye(4, dtype=np.float32)
rot[:3, :3] = self.rot.as_matrix()
res = rot @ res
# translate
res[:3, 3] -= self.center
return res
# intrinsics
@property
def intrinsics(self):
res = np.eye(3, dtype=np.float32)
focal = self.H / (2 * np.tan(self.fovy / 2))
res[0, 0] = res[1, 1] = focal
res[0, 2] = self.W // 2
res[1, 2] = self.H // 2
return res
def orbit(self, dx, dy):
# rotate along camera up/side axis!
side = self.rot.as_matrix()[:3, 0] # why this is side --> ? # already normalized.
rotvec_x = self.up * np.radians(-0.1 * dx)
rotvec_y = side * np.radians(0.1 * dy)
self.rot = R.from_rotvec(rotvec_x) * R.from_rotvec(rotvec_y) * self.rot
# wrong: rotate along global x/y axis
#self.rot = R.from_euler('xy', [-dy * 0.1, -dx * 0.1], degrees=True) * self.rot
def scale(self, delta):
self.radius *= 1.1 ** (-delta)
def pan(self, dx, dy, dz=0):
# pan in camera coordinate system (careful on the sensitivity!)
self.center += 0.001 * self.rot.as_matrix()[:3, :3] @ np.array([-dx, -dy, dz])
# wrong: pan in global coordinate system
#self.center += 0.001 * np.array([-dx, -dy, dz])
class NeRFGUI:
def __init__(self, opt, trainer, debug=True):
self.opt = opt
self.W = opt.W
self.H = opt.H
self.cam = OrbitCamera(opt.W, opt.H, r=opt.radius)
self.trainer = trainer
self.debug = debug
self.bg_color = None # rendering bg color (TODO)
self.training = False
self.step = 0 # training step
self.render_buffer = np.zeros((self.W, self.H, 3), dtype=np.float32)
self.need_update = True # camera moved, should reset accumulation
self.spp = 1 # sample per pixel
dpg.create_context()
self.register_dpg()
self.test_step()
def __del__(self):
dpg.destroy_context()
def train_step(self):
starter, ender = torch.cuda.Event(enable_timing=True), torch.cuda.Event(enable_timing=True)
starter.record()
outputs = self.trainer.train_gui(self.trainer.train_loader)
ender.record()
torch.cuda.synchronize()
t = starter.elapsed_time(ender)
self.step += 1
self.need_update = True
dpg.set_value("_log_train_time", f'{t:.4f}ms')
dpg.set_value("_log_train_log", f'step = {self.step: 5d}, loss = {outputs["loss"]:.4f}, lr = {outputs["lr"]:.6f}')
def test_step(self):
# TODO: seems we have to move data from GPU --> CPU --> GPU?
# TODO: dynamic rendering resolution to keep it fluent.
if self.need_update or self.spp < self.opt.max_spp:
starter, ender = torch.cuda.Event(enable_timing=True), torch.cuda.Event(enable_timing=True)
starter.record()
outputs = self.trainer.test_gui(self.cam.pose, self.cam.intrinsics, self.W, self.H, self.bg_color, self.spp)
ender.record()
torch.cuda.synchronize()
t = starter.elapsed_time(ender)
if self.need_update:
self.render_buffer = outputs['image']
self.spp = 1
self.need_update = False
else:
self.render_buffer = (self.render_buffer * self.spp + outputs['image']) / (self.spp + 1)
self.spp += 1
dpg.set_value("_log_infer_time", f'{t:.4f}ms')
dpg.set_value("_log_spp", self.spp)
dpg.set_value("_texture", self.render_buffer)
def register_dpg(self):
### register texture
with dpg.texture_registry(show=False):
dpg.add_raw_texture(self.W, self.H, self.render_buffer, format=dpg.mvFormat_Float_rgb, tag="_texture")
### register window
with dpg.window(tag="_primary_window", width=self.W, height=self.H):
dpg.add_image("_texture")
dpg.set_primary_window("_primary_window", True)
with dpg.window(label="Control", tag="_control_window", width=400, height=250):
# button theme
with dpg.theme() as theme_button:
with dpg.theme_component(dpg.mvButton):
dpg.add_theme_color(dpg.mvThemeCol_Button, (23, 3, 18))
dpg.add_theme_color(dpg.mvThemeCol_ButtonHovered, (51, 3, 47))
dpg.add_theme_color(dpg.mvThemeCol_ButtonActive, (83, 18, 83))
dpg.add_theme_style(dpg.mvStyleVar_FrameRounding, 5)
dpg.add_theme_style(dpg.mvStyleVar_FramePadding, 3, 3)
# time
if self.opt.train:
with dpg.group(horizontal=True):
dpg.add_text("Train time: ")
dpg.add_text("no data", tag="_log_train_time")
with dpg.group(horizontal=True):
dpg.add_text("Infer time: ")
dpg.add_text("no data", tag="_log_infer_time")
with dpg.group(horizontal=True):
dpg.add_text("SPP: ")
dpg.add_text("1", tag="_log_spp")
# train button
if self.opt.train:
with dpg.collapsing_header(label="Train", default_open=True):
with dpg.group(horizontal=True):
dpg.add_text("Train: ")
def callback_train(sender, app_data):
if self.training:
self.training = False
dpg.configure_item("_button_train", label="start")
else:
self.training = True
dpg.configure_item("_button_train", label="stop")
dpg.add_button(label="start", tag="_button_train", callback=callback_train)
dpg.bind_item_theme("_button_train", theme_button)
def callback_reset(sender, app_data):
@torch.no_grad()
def weight_reset(m: nn.Module):
reset_parameters = getattr(m, "reset_parameters", None)
if callable(reset_parameters):
m.reset_parameters()
self.trainer.model.apply(fn=weight_reset)
self.need_update = True
dpg.add_button(label="reset", tag="_button_reset", callback=callback_reset)
dpg.bind_item_theme("_button_reset", theme_button)
with dpg.group(horizontal=True):
dpg.add_text("Checkpoint: ")
def callback_save(sender, app_data):
self.trainer.save_checkpoint(full=True, best=False)
self.trainer.epoch += 1 # use epoch to indicate different calls.
dpg.set_value("_log_ckpt", "saved " + os.path.basename(self.trainer.stats["checkpoints"][-1]))
dpg.add_button(label="save", tag="_button_save", callback=callback_save)
dpg.bind_item_theme("_button_save", theme_button)
dpg.add_text("", tag="_log_ckpt")
with dpg.group(horizontal=True):
dpg.add_text("Log: ")
dpg.add_text("", tag="_log_train_log")
# rendering options
with dpg.collapsing_header(label="Options"):
# bg_color picker
def callback_change_bg(sender, app_data):
self.bg_color = torch.tensor(app_data[:3], dtype=torch.float32) # only need RGB in [0, 1]
self.need_update = True
dpg.add_color_edit((255, 255, 255), label="Background Color", width=200, tag="_color_editor", no_alpha=True, callback=callback_change_bg)
# debug info
if self.debug:
with dpg.collapsing_header(label="Debug"):
# pose
dpg.add_separator()
dpg.add_text("Camera Pose:")
dpg.add_text(str(self.cam.pose), tag="_log_pose")
### register camera handler
def callback_camera_drag_rotate(sender, app_data):
if not dpg.is_item_focused("_primary_window"):
return
dx = app_data[1]
dy = app_data[2]
self.cam.orbit(dx, dy)
self.need_update = True
if self.debug:
dpg.set_value("_log_pose", str(self.cam.pose))
def callback_camera_wheel_scale(sender, app_data):
if not dpg.is_item_focused("_primary_window"):
return
delta = app_data
self.cam.scale(delta)
self.need_update = True
if self.debug:
dpg.set_value("_log_pose", str(self.cam.pose))
def callback_camera_drag_pan(sender, app_data):
if not dpg.is_item_focused("_primary_window"):
return
dx = app_data[1]
dy = app_data[2]
self.cam.pan(dx, dy)
self.need_update = True
if self.debug:
dpg.set_value("_log_pose", str(self.cam.pose))
with dpg.handler_registry():
dpg.add_mouse_drag_handler(button=dpg.mvMouseButton_Left, callback=callback_camera_drag_rotate)
dpg.add_mouse_wheel_handler(callback=callback_camera_wheel_scale)
dpg.add_mouse_drag_handler(button=dpg.mvMouseButton_Middle, callback=callback_camera_drag_pan)
dpg.create_viewport(title='torch-ngp', width=self.W, height=self.H, resizable=False)
# TODO: seems dearpygui doesn't support resizing texture...
# def callback_resize(sender, app_data):
# self.W = app_data[0]
# self.H = app_data[1]
# # how to reload texture ???
# dpg.set_viewport_resize_callback(callback_resize)
### global theme
with dpg.theme() as theme_no_padding:
with dpg.theme_component(dpg.mvAll):
# set all padding to 0 to avoid scroll bar
dpg.add_theme_style(dpg.mvStyleVar_WindowPadding, 0, 0, category=dpg.mvThemeCat_Core)
dpg.add_theme_style(dpg.mvStyleVar_FramePadding, 0, 0, category=dpg.mvThemeCat_Core)
dpg.add_theme_style(dpg.mvStyleVar_CellPadding, 0, 0, category=dpg.mvThemeCat_Core)
dpg.bind_item_theme("_primary_window", theme_no_padding)
dpg.setup_dearpygui()
#dpg.show_metrics()
dpg.show_viewport()
def render(self):
while dpg.is_dearpygui_running():
# update texture every frame
if self.training:
self.train_step()
self.test_step()
dpg.render_dearpygui_frame()
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('path', type=str)
parser.add_argument('--workspace', type=str, default='workspace')
parser.add_argument('--seed', type=int, default=0)
parser.add_argument('--num_rays', type=int, default=4096)
parser.add_argument('--W', type=int, default=800)
parser.add_argument('--H', type=int, default=800)
parser.add_argument('--fp16', action='store_true', help="use amp mixed precision training")
parser.add_argument('--ff', action='store_true', help="use fully-fused MLP")
parser.add_argument('--tcnn', action='store_true', help="use TCNN backend")
parser.add_argument('--cuda_ray', action='store_true', help="use CUDA raymarching instead of pytorch")
parser.add_argument('--mode', type=str, default='colmap', help="dataset mode, supports (colmap, blender)")
parser.add_argument('--bound', type=float, default=2, help="assume the scene is bounded in box(-bound, bound)")
parser.add_argument('--scale', type=float, default=0.33, help="scale camera location into box(-bound, bound)")
parser.add_argument('--radius', type=float, default=3, help="default camera radius from center")
parser.add_argument('--max_spp', type=int, default=32)
parser.add_argument('--train', action='store_true', help="train the model through GUI")
opt = parser.parse_args()
if opt.ff:
assert opt.fp16, "fully-fused mode must be used with fp16 mode"
from nerf.network_ff import NeRFNetwork
elif opt.tcnn:
from nerf.network_tcnn import NeRFNetwork
else:
from nerf.network import NeRFNetwork
seed_everything(opt.seed)
model = NeRFNetwork(
encoding="hashgrid", encoding_dir="sphere_harmonics",
num_layers=2, hidden_dim=64, geo_feat_dim=15, num_layers_color=3, hidden_dim_color=64,
cuda_ray=opt.cuda_ray,
)
if opt.train:
train_dataset = NeRFDataset(opt.path, type='train', mode=opt.mode, scale=opt.scale)
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=1, shuffle=True)
criterion = torch.nn.SmoothL1Loss()
optimizer = lambda model: torch.optim.Adam([
{'name': 'encoding', 'params': list(model.encoder.parameters())},
{'name': 'net', 'params': list(model.sigma_net.parameters()) + list(model.color_net.parameters()), 'weight_decay': 1e-6},
], lr=1e-2, betas=(0.9, 0.99), eps=1e-15)
scheduler = lambda optimizer: optim.lr_scheduler.MultiStepLR(optimizer, milestones=[500, 1000, 1500], gamma=0.33)
trainer = Trainer('ngp', vars(opt), model, workspace=opt.workspace, optimizer=optimizer, criterion=criterion, ema_decay=0.95, fp16=opt.fp16, lr_scheduler=scheduler, use_checkpoint='latest')
trainer.train_loader = train_loader # attach dataloader to trainer
else:
trainer = Trainer('ngp', vars(opt), model, workspace=opt.workspace, fp16=opt.fp16, use_checkpoint='latest')
gui = NeRFGUI(opt, trainer)
gui.render()