-
Notifications
You must be signed in to change notification settings - Fork 26
/
colmap2nerf.py
293 lines (266 loc) · 9.41 KB
/
colmap2nerf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
#!/usr/bin/env python3
# origin: https://github.com/NVlabs/instant-ngp/blob/master/scripts/colmap2nerf.py
# Copyright (c) 2020-2022, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
import argparse
import os
from pathlib import Path, PurePosixPath
import numpy as np
import json
import sys
import math
import cv2
import os
import shutil
def parse_args():
parser = argparse.ArgumentParser(description="convert a text colmap export to nerf format transforms.json; optionally convert video to images, and optionally run colmap in the first place")
parser.add_argument("--video_in", default="", help="run ffmpeg first to convert a provided video file into a set of images. uses the video_fps parameter also")
parser.add_argument("--video_fps", default=2)
parser.add_argument("--run_colmap", action="store_true", help="run colmap first on the image folder")
parser.add_argument("--colmap_matcher", default="sequential", choices=["exhaustive","sequential","spatial","transitive","vocab_tree"], help="select which matcher colmap should use. sequential for videos, exhaustive for adhoc images")
parser.add_argument("--colmap_db", default="colmap.db", help="colmap database filename")
parser.add_argument("--images", default="images", help="input path to the images")
parser.add_argument("--text", default="colmap_text", help="input path to the colmap text files (set automatically if run_colmap is used)")
parser.add_argument("--aabb_scale", default=16, choices=["1","2","4","8","16"], help="large scene scale factor. 1=scene fits in unit cube; power of 2 up to 16")
parser.add_argument("--skip_early", default=0, help="skip this many images from the start")
parser.add_argument("--out", default="transforms.json", help="output path")
args = parser.parse_args()
return args
def do_system(arg):
print(f"==== running: {arg}")
err=os.system(arg)
if err:
print("FATAL: command failed")
sys.exit(err)
def run_ffmpeg(args):
if not os.path.isabs(args.images):
args.images = os.path.join(os.path.dirname(args.video_in), args.images)
images=args.images
video=args.video_in
fps=float(args.video_fps) or 1.0
print(f"running ffmpeg with input video file={video}, output image folder={images}, fps={fps}.")
if (input(f"warning! folder '{images}' will be deleted/replaced. continue? (Y/n)").lower().strip()+"y")[:1] != "y":
sys.exit(1)
try:
shutil.rmtree(images)
except:
pass
do_system(f"mkdir {images}")
do_system(f"ffmpeg -i {video} -qscale:v 1 -qmin 1 -vf \"fps={fps}\" {images}/%04d.jpg")
def run_colmap(args):
db=args.colmap_db
images=args.images
db_noext=str(Path(db).with_suffix(""))
if args.text=="text":
args.text=db_noext+"_text"
text=args.text
sparse=db_noext+"_sparse"
print(f"running colmap with:\n\tdb={db}\n\timages={images}\n\tsparse={sparse}\n\ttext={text}")
if (input(f"warning! folders '{sparse}' and '{text}' will be deleted/replaced. continue? (Y/n)").lower().strip()+"y")[:1] != "y":
sys.exit(1)
if os.path.exists(db):
os.remove(db)
do_system(f"colmap feature_extractor --ImageReader.camera_model OPENCV --ImageReader.single_camera 1 --database_path {db} --image_path {images}")
do_system(f"colmap {args.colmap_matcher}_matcher --database_path {db}")
try:
shutil.rmtree(sparse)
except:
pass
do_system(f"mkdir {sparse}")
do_system(f"colmap mapper --database_path {db} --image_path {images} --output_path {sparse}")
do_system(f"colmap bundle_adjuster --input_path {sparse}/0 --output_path {sparse}/0 --BundleAdjustment.refine_principal_point 1")
try:
shutil.rmtree(text)
except:
pass
do_system(f"mkdir {text}")
do_system(f"colmap model_converter --input_path {sparse}/0 --output_path {text} --output_type TXT")
def variance_of_laplacian(image):
return cv2.Laplacian(image, cv2.CV_64F).var()
def sharpness(imagePath):
image = cv2.imread(imagePath)
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
fm = variance_of_laplacian(gray)
return fm
def qvec2rotmat(qvec):
return np.array([
[
1 - 2 * qvec[2]**2 - 2 * qvec[3]**2,
2 * qvec[1] * qvec[2] - 2 * qvec[0] * qvec[3],
2 * qvec[3] * qvec[1] + 2 * qvec[0] * qvec[2]
], [
2 * qvec[1] * qvec[2] + 2 * qvec[0] * qvec[3],
1 - 2 * qvec[1]**2 - 2 * qvec[3]**2,
2 * qvec[2] * qvec[3] - 2 * qvec[0] * qvec[1]
], [
2 * qvec[3] * qvec[1] - 2 * qvec[0] * qvec[2],
2 * qvec[2] * qvec[3] + 2 * qvec[0] * qvec[1],
1 - 2 * qvec[1]**2 - 2 * qvec[2]**2
]
])
def rotmat(a, b):
a, b = a / np.linalg.norm(a), b / np.linalg.norm(b)
v = np.cross(a, b)
c = np.dot(a, b)
s = np.linalg.norm(v)
kmat = np.array([[0, -v[2], v[1]], [v[2], 0, -v[0]], [-v[1], v[0], 0]])
return np.eye(3) + kmat + kmat.dot(kmat) * ((1 - c) / (s ** 2 + 1e-10))
def closest_point_2_lines(oa, da, ob, db): # returns point closest to both rays of form o+t*d, and a weight factor that goes to 0 if the lines are parallel
da=da/np.linalg.norm(da)
db=db/np.linalg.norm(db)
c=np.cross(da,db)
denom=(np.linalg.norm(c)**2)
t=ob-oa
ta=np.linalg.det([t,db,c])/(denom+1e-10)
tb=np.linalg.det([t,da,c])/(denom+1e-10)
if ta>0:
ta=0
if tb>0:
tb=0
return (oa+ta*da+ob+tb*db)*0.5,denom
if __name__ == "__main__":
args = parse_args()
if args.video_in != "":
run_ffmpeg(args)
if args.run_colmap:
run_colmap(args)
AABB_SCALE=int(args.aabb_scale)
SKIP_EARLY=int(args.skip_early)
IMAGE_FOLDER=args.images
TEXT_FOLDER=args.text
OUT_PATH=args.out
print(f"outputting to {OUT_PATH}...")
with open(os.path.join(TEXT_FOLDER,"cameras.txt"), "r") as f:
angle_x=math.pi/2
for line in f:
# 1 SIMPLE_RADIAL 2048 1536 1580.46 1024 768 0.0045691
# 1 OPENCV 3840 2160 3178.27 3182.09 1920 1080 0.159668 -0.231286 -0.00123982 0.00272224
# 1 RADIAL 1920 1080 1665.1 960 540 0.0672856 -0.0761443
if line[0]=="#":
continue
els=line.split(" ")
w = float(els[2])
h = float(els[3])
fl_x = float(els[4])
fl_y = float(els[4])
k1 = 0
k2 = 0
p1 = 0
p2 = 0
cx = w/2
cy = h/2
if (els[1]=="SIMPLE_RADIAL"):
cx = float(els[5])
cy = float(els[6])
k1 = float(els[7])
elif (els[1]=="RADIAL"):
cx = float(els[5])
cy = float(els[6])
k1 = float(els[7])
k2 = float(els[8])
elif (els[1]=="OPENCV"):
fl_y = float(els[5])
cx = float(els[6])
cy = float(els[7])
k1 = float(els[8])
k2 = float(els[9])
p1 = float(els[10])
p2 = float(els[11])
else:
print("unknown camera model ", els[1])
# fl = 0.5 * w / tan(0.5 * angle_x);
angle_x= math.atan(w/(fl_x*2))*2
angle_y= math.atan(h/(fl_y*2))*2
fovx=angle_x*180/math.pi
fovy=angle_y*180/math.pi
print(f"camera:\n\tres={w,h}\n\tcenter={cx,cy}\n\tfocal={fl_x,fl_y}\n\tfov={fovx,fovy}\n\tk={k1,k2} p={p1,p2} ")
with open(os.path.join(TEXT_FOLDER,"images.txt"), "r") as f:
i=0
bottom = np.array([0,0,0,1.]).reshape([1,4])
out={
"camera_angle_x":angle_x,
"camera_angle_y":angle_y,
"fl_x":fl_x,
"fl_y":fl_y,
"k1":k1,
"k2":k2,
"p1":p1,
"p2":p2,
"cx":cx,
"cy":cy,
"w":w,
"h":h,
"aabb_scale":AABB_SCALE,"frames":[]
}
up=np.zeros(3)
for line in f:
line=line.strip()
if line[0]=="#":
continue
i=i+1
if i < SKIP_EARLY*2:
continue
if i%2==1 :
elems=line.split(" ") # 1-4 is quat, 5-7 is trans, 9 is filename
#name = str(PurePosixPath(Path(IMAGE_FOLDER, elems[9])))
# why is this requireing a relitive path while using ^
image_rel = os.path.relpath(IMAGE_FOLDER)
name = str(f"./{image_rel}/{elems[9]}")
b=sharpness(name)
print(name, "sharpness=",b)
image_id = int(elems[0])
qvec = np.array(tuple(map(float, elems[1:5])))
tvec = np.array(tuple(map(float, elems[5:8])))
R = qvec2rotmat(-qvec)
t = tvec.reshape([3,1])
m = np.concatenate([np.concatenate([R, t], 1), bottom], 0)
c2w = np.linalg.inv(m)
c2w[0:3,2] *= -1 # flip the y and z axis
c2w[0:3,1] *= -1
c2w=c2w[[1,0,2,3],:] # swap y and z
c2w[2,:] *= -1 # flip whole world upside down
up += c2w[0:3,1]
frame={"file_path":name,"sharpness":b,"transform_matrix": c2w}
out["frames"].append(frame)
nframes = len(out["frames"])
up = up / np.linalg.norm(up)
print("up vector was ", up)
R=rotmat(up,[0,0,1]) # rotate up vector to [0,0,1]
R=np.pad(R,[0,1])
R[-1,-1]=1
for f in out["frames"]:
f["transform_matrix"]=np.matmul(R,f["transform_matrix"]) # rotate up to be the z axis
# find a central point they are all looking at
print("computing center of attention...")
totw=0
totp=[0,0,0]
for f in out["frames"]:
mf=f["transform_matrix"][0:3,:]
for g in out["frames"]:
mg=g["transform_matrix"][0:3,:]
p,w=closest_point_2_lines(mf[:,3],mf[:,2],mg[:,3],mg[:,2])
if w>0.01:
totp+=p*w
totw+=w
totp/=totw
print(totp) # the cameras are looking at totp
for f in out["frames"]:
f["transform_matrix"][0:3,3]-=totp
avglen=0.
for f in out["frames"]:
avglen+=np.linalg.norm(f["transform_matrix"][0:3,3])
avglen/=nframes
print("avg camera distance from origin ", avglen)
for f in out["frames"]:
f["transform_matrix"][0:3,3]*=4./avglen # scale to "nerf sized"
for f in out["frames"]:
f["transform_matrix"]=f["transform_matrix"].tolist()
print(nframes,"frames")
print(f"writing {OUT_PATH}")
with open(OUT_PATH, "w") as outfile:
json.dump(out, outfile, indent=2)