-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRemoveEle.c
98 lines (88 loc) · 1.85 KB
/
RemoveEle.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
//方法1 最简单的方法,空间复杂度为O(n),时间复杂度为O(n)
int removeElement(int A[], int n, int elem)
{
int B[n];
int i, j;
for (i = 0; i < n; i++)
if (A[i] != elem)
B[j++] = A[i];
for (i = 0; i < j; i++)
A[i] = B[i];
return j;
}
//方法2, 空间复杂度O(1),时间复杂度O(n)
int removeElement(int A[], int n, int elem)
{
int i, j;
i = j = 0;
for (i = 0; i < n; i++) {
if (A[i] != elem) {
A[j++] = A[i];
}
}
return j;
}
//方法3 空间复杂度为O(1),时间复杂度为O(nlgn)
//先快排,然后再二分查找
int partition(int A[], int low, int high)
{
int i, j, tem;
i = low;
for (j = low + 1; j <= high; j++) {
if (A[j] < A[low]) {
i++;
tem = A[j];
A[j] = A[i];
A[i] = tem;
}
}
tem = A[low];
A[low] = A[i];
A[i] = tem;
return i;
}
void quicksort(int A[], int low, int high)
{
int tem;
if (low >= high)
return;
tem = partition(A, low, high);
quicksort(A, low, tem -1);
quicksort(A, tem+1, high);
}
int binarysearch(int A[], int n, int val)
{
int low, mid, up;
low = 0, up = n - 1;
while (low <= up) {
mid = (low + up) / 2;
if (val > A[mid])
low = mid + 1;
else if (val < A[mid])
up = mid - 1;
else
return mid;
}
return -1;
}
int removeElement(int A[], int n, int elem)
{
int i, l, u, cnt;
quicksort(A, 0, n-1);
i = binarysearch(A, n, elem);
if (i == -1)
return n;
l = i;
u = i;
while ((l >= 0) && (A[l] == elem))
l--;
l++;
while ( (u < n) && (A[u] == elem))
u++;
cnt = u - l;
while (u < n) {
A[u-cnt] = A[u];
u++;
}
return n - cnt;
}