-
Notifications
You must be signed in to change notification settings - Fork 4
/
inverse_semantic.py
260 lines (196 loc) · 7.79 KB
/
inverse_semantic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
import torch
import torch.optim as optim
import numpy as np
import os
import argparse
import time
from models import config
import logging
from torch.nn import functional as F
from models.Losses.VGG import VGGLoss
from models.utils import tensor2label
import cv2
from torchvision.utils import save_image, make_grid
logger_py = logging.getLogger(__name__)
np.random.seed(0)
torch.manual_seed(0)
# Arguments
parser = argparse.ArgumentParser(
description='Train a mm3dsgan model.'
)
parser.add_argument('config', type=str, help='Path to config file.')
parser.add_argument('--no-cuda', action='store_true', help='Do not use cuda.')
parser.add_argument('--exit-after', type=int, default=-1,
help='Checkpoint and exit after specified number of '
'seconds with exit code 2.')
parser.add_argument('--save_path', type=str, default='./out/fashion/inverse_40',
help='Path for saving inversing images')
parser.add_argument('--epoches', type=int, default=20000,
help='overall epoches')
parser.add_argument('--id', type=int, default=40,
help='overall epoches')
args = parser.parse_args()
def toImg(x):
x = x.cpu().detach().numpy().transpose(0,2,3,1) * 255.0
x = x[0][:,:,::-1]
return x
def toNpy(x):
x = x.cpu().detach().numpy()[0]
return x
def interpolate_sphere(z1, z2, t):
p = (z1 * z2).sum(dim=-1, keepdim=True)
p = p / z1.pow(2).sum(dim=-1, keepdim=True).sqrt()
p = p / z2.pow(2).sum(dim=-1, keepdim=True).sqrt()
omega = torch.acos(p)
s1 = torch.sin((1-t)*omega)/torch.sin(omega)
s2 = torch.sin(t*omega)/torch.sin(omega)
z = s1 * z1 + s2 * z2
return z
if not os.path.exists(args.save_path):
os.mkdir(args.save_path)
cfg = config.load_config(args.config, 'configs/default.yaml')
is_cuda = (torch.cuda.is_available() and not args.no_cuda)
device = torch.device("cuda" if is_cuda else "cpu")
# Shorthands
out_dir = cfg['inverse']['out_dir']
backup_every = cfg['inverse']['backup_every']
exit_after = args.exit_after
lr = cfg['inverse']['learning_rate']
lr_d = cfg['inverse']['learning_rate_d']
batch_size = cfg['inverse']['batch_size']
n_workers = cfg['inverse']['n_workers']
t0 = time.time()
# Output directory
if not os.path.exists(out_dir):
os.makedirs(out_dir)
test_dataset = config.get_dataset(cfg)
test_loader = torch.utils.data.DataLoader(
test_dataset, batch_size=1, num_workers=n_workers, shuffle=False,
pin_memory=True, drop_last=True,
)
def L1_loss(real, fake):
return F.l1_loss(real, fake)
model = config.get_model(cfg, device=device, len_dataset=len(test_dataset))
# Initialize training
opti = optim.Adam
g = model.generator
g_eval = g
g_eval.eval()
for p in g.parameters():
p.requires_grad_(False)
latent_dict, app_, pose_, s, t, r = g.get_vis_dict_inverse(1)
app_.requires_grad = True
pose_.requires_grad = True
s.requires_grad = True
t.requires_grad = True
r.requires_grad = True
optimizer = opti({app_, pose_, s, t, r}, lr=0.1, betas=(0.9, 0.999), eps=1e-8)
try:
ckpt = torch.load('./out/fashion256/model.pt', map_location='cpu')
new_dict_ = model.state_dict()
for k, v in ckpt['model'].items():
if k in new_dict_:
new_dict_[k] = v
model.load_state_dict(new_dict_)
print("Loaded model checkpoint.")
except FileExistsError:
load_dict = dict()
print("No model checkpoint found.")
vggloss = VGGLoss().to(device)
data = list(test_loader)[args.id]
epoch_it = 0.0
t0b = time.time()
seg = data['seg']
real_img = seg.to(device)
for i in range(args.epoches):
epoch_it += 1
optimizer.zero_grad()
x_fake_seg = g(**latent_dict)
l1_loss = L1_loss(real_img, x_fake_seg)
overall_g_loss = l1_loss
g.zero_grad()
overall_g_loss.backward()
optimizer.step()
if epoch_it % 100 == 0:
print('epoch', epoch_it, 'overall loss', overall_g_loss.item(), 'l1_loss', l1_loss.item())
if epoch_it % 100 == 0:
out_file_name = 'output{}.jpg'.format(epoch_it)
out_file_name_seg = 'output{}_seg.jpg'.format(epoch_it)
fakeimage = tensor2label(x_fake_seg, 8, imtype=np.float32, tile=True, forsave=True)
save_image(torch.from_numpy(fakeimage), os.path.join(args.save_path, out_file_name_seg))
fakeimage = (fakeimage.transpose(0,2,3,1)[0]) * 255.0
realimage = tensor2label(real_img, 8, imtype=np.float32, tile=True, forsave=True)
realimage = (realimage.transpose(0,2,3,1)[0]) * 255.0
img_ = np.stack((fakeimage, realimage), axis=0)
# real and fake
img_ = np.transpose(img_, (1,0,2,3))
h,b,w,c = img_.shape
img_ = img_.reshape((h,b*w,c))
cv2.imwrite(os.path.join(args.save_path, out_file_name), img_)
# for different app_code
app_code = g_eval.get_latent_codes(1)[0]
for i in range(64):
out_file_name = 'app_{}.jpg'.format(i)
out_file_name_npy = 'app_{}.npy'.format(i)
app_path = os.path.join(args.save_path, 'app')
if not os.path.exists(app_path):
os.mkdir(app_path)
w = i * 1.0 / ((64) - 1)
z_ii = interpolate_sphere(app_code, app_, w)
latent_dict_ = latent_dict.copy()
latent_dict_['latent_codes'] = [z_ii, pose_]
x_fake_seg = g_eval(**latent_dict_)
fakeimage = tensor2label(x_fake_seg, 8, imtype=np.float32, tile=True, forsave=True)
save_image(torch.from_numpy(fakeimage), os.path.join(app_path, out_file_name))
fakeimage = (fakeimage.transpose(0, 2, 3, 1)[0] + 1.0) * 127.5
# cv2.imwrite(os.path.join(app_path, out_file_name), fakeimage)
np.save(os.path.join(app_path, out_file_name_npy), toNpy(x_fake_seg))
# for different pose code
app_pose_code = g_eval.get_latent_codes(1)[1]
app_pose_codev2 = g_eval.get_latent_codes(1)[1]
for i in range(64):
out_file_name = 'pose_{}.jpg'.format(i)
out_file_name_npy = 'pose_{}.npy'.format(i)
app_path = os.path.join(args.save_path, 'pose')
if not os.path.exists(app_path):
os.mkdir(app_path)
w = i * 1.0 / ((64) - 1)
z_ii = interpolate_sphere(app_pose_code, app_pose_codev2, w)
latent_dict_ = latent_dict.copy()
latent_dict_['latent_codes'] = [app_, z_ii]
x_fake_seg = g_eval(**latent_dict_)
fakeimage = tensor2label(x_fake_seg, 8, imtype=np.float32, tile=True, forsave=True)
save_image(torch.from_numpy(fakeimage), os.path.join(app_path, out_file_name))
fakeimage = (fakeimage.transpose(0, 2, 3, 1)[0] + 1.0) * 127.5
np.save(os.path.join(app_path, out_file_name_npy), toNpy(x_fake_seg))
# for different T
n_steps = 64
r_scale = [0., 1.]
print(latent_dict['latent_codes'][0][0][0])
for i in range(n_steps):
out_file_name = 'R_{}.jpg'.format(i)
out_file_name_npy = 'R_{}.npy'.format(i)
app_path = os.path.join(args.save_path, 'rotation')
if not os.path.exists(app_path):
os.mkdir(app_path)
r_ = [i * 1.0 / (n_steps - 1) for j in range(1)]
r_ = [r_scale[0] + ri * (r_scale[1] - r_scale[0]) for ri in r_]
r_ = g_eval.get_rotation(r_, 1)
latent_dict_ = latent_dict.copy()
latent_dict_['transformations'] = [s, t, r_]
x_fake_seg = g(**latent_dict_)
fakeimage = tensor2label(x_fake_seg, 8, imtype=np.float32, tile=True, forsave=True)
save_image(torch.from_numpy(fakeimage), os.path.join(app_path, out_file_name))
fakeimage = (fakeimage.transpose(0, 2, 3, 1)[0] + 1.0) * 127.5
#cv2.imwrite(os.path.join(app_path, out_file_name), fakeimage)
np.save(os.path.join(app_path, out_file_name_npy), toNpy(x_fake_seg))
out_file_name = 'img.jpg'
out_file_name_seg = 'seg.jpg'
real_path = os.path.join(args.save_path, 'real')
if not os.path.exists(real_path):
os.mkdir(real_path)
segimage = tensor2label(seg, 8, imtype=np.float32, tile=True, forsave=True)
save_image(torch.from_numpy(segimage), os.path.join(real_path, out_file_name_seg))
image = data['image']
image_ = toImg(image)
cv2.imwrite(os.path.join(real_path, out_file_name), image_)