-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathocr_server.py
151 lines (126 loc) · 5.6 KB
/
ocr_server.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
# -*-coding:utf-8-*-
import os
import json
import cv2
import sys
import traceback
import argparse
from flask import Flask, Response, request
import datetime
from queue import Queue
import threading
import multiprocessing
import time
import random
from setproctitle import setproctitle
from config import Config
import tools.logger as logger_
from tools.infer.utility import base64_to_cv2, mkdir
from predict_system import OCR
from translate.API import translate
app = Flask("server", static_url_path='')
app.config['PROPAGATE_EXCEPTIONS'] = True
_save_image_q = Queue(1000)
config = Config()
@app.route("/dango/algo/ocr/server", methods=['POST', 'GET'])
def ocr_server():
try:
logger.info("-" * 50)
logger.info("端口 {} /dango/algo/ocr/server 收到请求".format(g_port))
now_time = datetime.datetime.now().strftime('%Y-%m-%d-%H-%M-%S-%f')
day = "-".join(now_time.split("-")[:3])
# params = request.get_json()
content = request.form
images = content['image']
language_type = content['language_type']
user_id = content["user_id"]
platform = content.get('platform', None)
need_translate = content.get("translate", 'no')
s1 = time.time()
images_decode = [base64_to_cv2(images)]
logger.info("收到: {}, {}, {}".format(user_id, platform, language_type))
result = ocr.predict(language_type, images=images_decode)
logger.info("识别结果为: {}, 是否需要翻译: {}".format(result, need_translate))
save_basename = "{}/{}/{}_{}_{}_{}_{}".format(config.save_dir + "/" + g_port, day, g_port, platform, user_id,
language_type, now_time)
_save_image_q.put([save_basename, images_decode, result])
translated = False
response_data = {'result': result, 'translated': translated}
if need_translate == 'yes':
logger.info("开始进行翻译...")
s3 = time.time()
rand_idx = random.randint(0, len(config.baidu_translate_secret_key) - 1)
fanyi_app_id = config.baidu_translate_app_id[rand_idx]
fanyi_secret_key = config.baidu_translate_secret_key[rand_idx]
translate_result, translated = translate(result[0], fanyi_app_id, fanyi_secret_key, logger)
if translated:
logger.info("翻译成功: {}, 结果为: {}".format(translated, translate_result))
response_data['translate_result'] = translate_result
response_data['translated'] = translated
else:
logger.info("翻译失败: {}, 错误码: {}".format(translated, translate_result))
s4 = time.time()
logger.info("翻译耗时: {}".format(s4 - s3))
s2 = time.time()
logger.info("==>> 完成, 总耗时 {} , 开始回复: {}".format(s2 - s1, response_data))
return Response(json.dumps({'status': 0, 'data': response_data}),
mimetype='application/json')
except:
e = traceback.format_exc()
logger.info("错误")
logger.error(e)
return Response(json.dumps({'status': -1, 'data': 'None'}), mimetype='application/json')
def save_img():
while True:
try:
save_basename, image_cv2, words_result = _save_image_q.get(block=True)
assert len(image_cv2) == len(words_result)
for idx, img in enumerate(image_cv2):
save_name = save_basename + "_" + str(idx) + ".jpg"
mkdir(os.path.dirname(save_name))
cv2.imwrite(save_name, img)
with open(save_name.replace(".jpg", ".txt"), "w") as f:
f.write(str(words_result[idx]))
logger.info('保存图片 {} 及 txt'.format(save_name))
except:
e = traceback.format_exc()
logger.info(e)
def do_work(gpu, port):
global logger, g_port, ocr
try:
os.environ["CUDA_VISIBLE_DEVICES"] = "{}".format(gpu)
logger = logger_.get_logger("./log/ocr_{}.log".format(port))
g_port = port
logger.info("===>>> 初始化模型到gpu:{}, port: {}".format(gpu, port))
ocr = OCR(config, logger, language_list)
logger.info("==>> 启动成功")
app.run(host=config.host, port=port, threaded=True)
except BaseException as e:
logger.error('错误,启动flask异常{}'.format(e))
logger.info(traceback.format_exc())
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--gpu', type=str, help='gpu index: 0_1_2_3', default="0")
parser.add_argument('--port', type=str, help='server port: 8811_8812_8813', default="8811")
parser.add_argument('--det', type=str, help='detection model', default="DB")
parser.add_argument('--rec', type=str, help='recognize language model', default="ch,japan,en,korean")
args = parser.parse_args()
setproctitle('ocr_server_{}_{}'.format(args.port, args.rec))
ports = args.port.split("_") # [args.port]
gpus = args.gpu.split("_") # [args.gpu]
language_list = args.rec.replace(" ", "").split(",")
if len(gpus) == 1:
gpus = gpus * len(ports)
gpu_num = len(gpus)
port_num = len(ports)
if gpu_num != port_num:
print('启动失败:GPU数量 != 端口数量!')
sys.exit(1)
threading.Thread(target=save_img, name="save img").start()
do_work(gpu=gpus[0], port=ports[0])
# pool = multiprocessing.Pool(processes=port_num)
# for index in range(port_num):
# pool.apply_async(do_work, (gpus[index], ports[index]))
# pool.close()
# pool.join()
# save_img()