-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathutils.py
42 lines (31 loc) · 1.22 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import os
from config import *
def ensure_folder(folder):
if not os.path.exists(folder):
os.makedirs(folder)
def adjust_learning_rate(optimizer, shrink_factor):
print("\nDECAYING learning rate.")
for param_group in optimizer.param_groups:
param_group['lr'] = param_group['lr'] * shrink_factor
print("The new learning rate is %f\n" % (optimizer.param_groups[0]['lr'],))
class ExpoAverageMeter(object):
# Exponential Weighted Average Meter
def __init__(self, beta=0.9):
self.reset()
def reset(self):
self.beta = 0.9
self.val = 0
self.avg = 0
self.count = 0
def update(self, val):
self.val = val
self.avg = self.beta * self.avg + (1 - self.beta) * self.val
def save_checkpoint(epoch, model, optimizer, val_loss, is_best):
ensure_folder(save_folder)
state = {'model': model,
'optimizer': optimizer}
filename = '{0}/checkpoint_{1}_{2:.3f}.tar'.format(save_folder, epoch, val_loss)
torch.save(state, filename)
# If this checkpoint is the best so far, store a copy so it doesn't get overwritten by a worse checkpoint
if is_best:
torch.save(state, '{}/BEST_checkpoint.tar'.format(save_folder))