-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathtrain.py
182 lines (150 loc) · 6.79 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import time
import torch.optim as optim
from torch import nn
from torch.utils.data import DataLoader
import random
from dataset import Graphdataset
from model import graphNetwork
from utils import *
import logging
from drn import drn_c_26
def train(epoch, train_loader, model, optimizer, criterion):
model.train()
batch_time = ExpoAverageMeter() # forward prop. + back prop. time
losses = ExpoAverageMeter() # loss (per word decoded)
start = time.time()
#DATA_NUM = len(train_loader)
#shuffle_sort = list(range(DATA_NUM))
#random.shuffle(shuffle_sort)
model.zero_grad()
for batch_i, data in enumerate(train_loader):
# Set device options
img = data['img'].to(device)
# Zero gradients
if not per_edge_classifier:
edge_index = data['edge_index'][0].to(device)
if (data['y'][0].shape[0] > 105):
continue
label = data['y'][0].to(device)
edge_masks = data['x'][0].to(device)
y_hat = model(img, edge_masks, edge_index)
else:
edge_masks = data['x'].to(device)
y_hat = model(img, edge_masks, None)
label = data['y'].to(device)
loss = criterion(y_hat, label)
if not per_edge_classifier:
loss = loss / interval_training
loss.backward()
if (batch_i + 1) % interval_training == 0 or per_edge_classifier:
optimizer.step()
model.zero_grad()
del img
if not per_edge_classifier:
del edge_index
del label
del edge_masks
# Keep track of metrics
if not per_edge_classifier:
losses.update(loss.item() * interval_training)
else:
losses.update(loss.item())
batch_time.update(time.time() - start)
start = time.time()
# Print status
if batch_i % print_freq == 0:
logging.info('Epoch: [{0}][{1}/{2}]\t'
'Batch Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'.format(epoch, batch_i, len(train_loader),
batch_time=batch_time,
loss=losses))
def valid(val_loader, model, criterion):
model.eval() # eval mode (no dropout or batchnorm)
batch_time = ExpoAverageMeter() # forward prop. + back prop. time
losses = ExpoAverageMeter() # loss (per word decoded)
start = time.time()
with torch.no_grad():
# Batches
for i_batch, data in enumerate(val_loader):
img = data['img'].to(device)
if not per_edge_classifier:
if data['y'][0].shape[0] > 105:
continue
edge_index = data['edge_index'][0].to(device)
label = data['y'][0].to(device)
edge_masks = data['x'][0].to(device)
y_hat = model(img, edge_masks, edge_index)
else:
edge_masks = data['x'].to(device)
y_hat = model(img, edge_masks, None)
label = data['y'].to(device)
loss = criterion(y_hat, label)
losses.update(loss.item())
batch_time.update(time.time() - start)
start = time.time()
# Print status
if i_batch % print_freq == 0:
logging.info('Validation: [{0}/{1}]\t'
'Batch Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'.format(i_batch, len(val_loader),
batch_time=batch_time,
loss=losses))
return losses.avg
def main():
DATAPATH='/local-scratch/fza49/cities_dataset'
DETCORNERPATH='/local-scratch/fza49/nnauata/building_reconstruction/geometry-primitive-detector/det_final'
train_dataset = Graphdataset(DATAPATH, DETCORNERPATH, phase='train', mix_gt=True, per_edge=per_edge_classifier)
train_dataset_2 = Graphdataset(DATAPATH, DETCORNERPATH, phase='train', mix_gt=False, per_edge=per_edge_classifier)
train_dataloader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=8)
train_dataloader_2 = DataLoader(train_dataset_2, batch_size=batch_size, shuffle=True, num_workers=8)
test_dataset = Graphdataset(DATAPATH, DETCORNERPATH, phase='test', per_edge=per_edge_classifier)
test_datloader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False, num_workers=8)
#backbone
drn = drn_c_26(pretrained=True, image_channels=4)
drn = nn.Sequential(*list(drn.children())[:-7])
model = graphNetwork(model_loop_time, drn, edge_feature_map_channel=edge_feature_channels,
gnn=gnn, conv_mpn=conv_mpn)
model.double()
model = model.to(device)
model.change_device()
if pretrain:
chechpoint_name = 'checkpoint_25_0.602'
checkpoint = '{}/{}.tar'.format(save_folder, chechpoint_name)
checkpoint = 'conv_mpn_loop_1/checkpoint_16_2.025.tar'
print(checkpoint)
checkpoint = torch.load(checkpoint, map_location=device)
param = checkpoint['model'].state_dict()
model.load_state_dict(param, strict=False)
logging.info(model)
optimizer = optim.Adam(model.parameters(), lr=lr)
best_loss = 100000
epochs_since_improvement = 0
criterion = nn.CrossEntropyLoss(weight=torch.tensor([0.33, 1.0]).double().to(device))
# Epochs
for epoch in range(start_epoch, epochs):
# Decay learning rate if there is no improvement for 8 consecutive epochs, and terminate training after 20
if epochs_since_improvement == 20:
break
if epochs_since_improvement > 0 and epochs_since_improvement % 4 == 0:
adjust_learning_rate(optimizer, 0.8)
# One epoch's training
if epoch % 3 != 0:
train(epoch, train_dataloader, model, optimizer, criterion)
else:
train(epoch, train_dataloader_2, model, optimizer, criterion)
# One epoch's validation
val_loss = valid(test_datloader, model, criterion)
logging.info('\n * LOSS - {loss:.3f}\n'.format(loss=val_loss))
# Check if there was an improvement
is_best = val_loss < best_loss
best_loss = min(best_loss, val_loss)
if not is_best:
epochs_since_improvement += 1
logging.info("\nEpochs since last improvement: %d\n" % (epochs_since_improvement,))
else:
epochs_since_improvement = 0
# Save checkpoint
save_checkpoint(epoch, model, optimizer, val_loss, is_best)
if __name__ == '__main__':
logging.getLogger().setLevel(logging.INFO)
main()