-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcollect_stats.py
58 lines (48 loc) · 1.72 KB
/
collect_stats.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
from dataset import HerbalDataset
import torch
from torch.utils.data import ConcatDataset, DataLoader
from torchvision import transforms
from tqdm import tqdm
import pretrainedmodels.utils as utils
import math
# tf_img = utils.TransformImage({
# 'input_space':'RGB',
# 'input_range':[0,1],
# 'input_size': [3,768,768],
# 'mean': [0.,0.,0.],
# 'std' : [1.,1.,1.]
# })
input_size = [3,768,768]
scale = 0.875
tf_img = transforms.Compose(
[
transforms.Resize(int(math.floor(max(input_size)/scale))),
transforms.CenterCrop(max(input_size)),
transforms.ToTensor()
]
)
data_train = HerbalDataset('./dataset/nybg2020/train/', train=True, transform=tf_img)
data_test = HerbalDataset('./dataset/nybg2020/test/', train=False, transform=tf_img)
data_whole = ConcatDataset([data_train, data_test])
batch_size = 24*2
loader = DataLoader(data_whole, batch_size=batch_size, num_workers=24)
device = 'cuda:2'
mean = torch.zeros(3).to(device)
std2 = torch.zeros(3).to(device)
nb_samples = 0
for batch in tqdm(loader):
data = batch['image'].to(device)
batch_samples = data.size(0)
data = data.view(data.size(1), -1)
mu_new = data.mean(1)
mu_old = mean
mean = (nb_samples * mean / (nb_samples + batch_samples) + batch_samples * mu_new /
(nb_samples + batch_samples))
std2 = (nb_samples * (std2 + mu_old ** 2) / (nb_samples + batch_samples) +
batch_samples * (data.std(1) ** 2 + mu_new ** 2) / (nb_samples + batch_samples) -
mean ** 2)
nb_samples += batch_samples
if nb_samples // batch_samples % 300 == 0:
with open('./stats', 'w') as f:
f.write(str(mean) + '\n')
f.write(str(torch.sqrt(std2)) + '\n')