-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathtrain_net.py
85 lines (71 loc) · 2.6 KB
/
train_net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
#!/usr/bin/env python3
# Copied from
# https://github.com/facebookresearch/detectron2/blob/bb96d0b01d0605761ca182d0e3fac6ead8d8df6e/projects/DensePose/train_net.py
"""
DensePose Training Script.
This script is similar to the training script in detectron2/tools.
It is an example of how a user might use detectron2 for a new project.
"""
from datetime import timedelta
import detectron2.utils.comm as comm
from densepose import add_densepose_config
from densepose.engine import Trainer
from densepose.modeling.densepose_checkpoint import DensePoseCheckpointer
from detectron2.config import get_cfg
from detectron2.engine import DEFAULT_TIMEOUT, default_argument_parser, default_setup, hooks, launch
from detectron2.evaluation import verify_results
from detectron2.utils.file_io import PathManager
from detectron2.utils.logger import setup_logger
import backbone
import roi_heads
from config import add_timmnets_config
def setup(args):
cfg = get_cfg()
add_densepose_config(cfg)
add_timmnets_config(cfg)
cfg.merge_from_file(args.config_file)
cfg.merge_from_list(args.opts)
cfg.freeze()
default_setup(cfg, args)
# Setup logger for "densepose" module
setup_logger(output=cfg.OUTPUT_DIR, distributed_rank=comm.get_rank(), name="densepose")
return cfg
def main(args):
cfg = setup(args)
# disable strict kwargs checking: allow one to specify path handle
# hints through kwargs, like timeout in DP evaluation
PathManager.set_strict_kwargs_checking(False)
if args.eval_only:
model = Trainer.build_model(cfg)
DensePoseCheckpointer(model, save_dir=cfg.OUTPUT_DIR).resume_or_load(
cfg.MODEL.WEIGHTS, resume=args.resume
)
res = Trainer.test(cfg, model)
if cfg.TEST.AUG.ENABLED:
res.update(Trainer.test_with_TTA(cfg, model))
if comm.is_main_process():
verify_results(cfg, res)
return res
trainer = Trainer(cfg)
trainer.resume_or_load(resume=args.resume)
if cfg.TEST.AUG.ENABLED:
trainer.register_hooks(
[hooks.EvalHook(0, lambda: trainer.test_with_TTA(cfg, trainer.model))]
)
return trainer.train()
if __name__ == "__main__":
args = default_argument_parser().parse_args()
cfg = setup(args)
timeout = (
DEFAULT_TIMEOUT if cfg.DENSEPOSE_EVALUATION.DISTRIBUTED_INFERENCE else timedelta(hours=4)
)
print("Command Line Args:", args)
launch(
main,
args.num_gpus,
num_machines=args.num_machines,
machine_rank=args.machine_rank,
dist_url=args.dist_url,
args=(args,),
timeout=timeout,
)