-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathgenerate-tfrecord.py
79 lines (67 loc) · 3.67 KB
/
generate-tfrecord.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import pandas as pd
import tensorflow as tf
from PIL import Image
import os
tf.app.flags.DEFINE_string('classes_file', None, 'Path to the text file containing downloaded classes, name per line')
tf.app.flags.DEFINE_string('class_descriptions_file', None, 'Path to the CSV file with class id mapping to human readable label name')
tf.app.flags.DEFINE_string('annotations_file', None, 'Path to the CSV file with bbox annotations')
tf.app.flags.DEFINE_string('images_dir', None, 'Path to the directory with downloaded images')
tf.app.flags.DEFINE_string('output_file', None, 'Path to the resulting TFRecord file')
tf.app.flags.mark_flags_as_required([
'classes_file',
'class_descriptions_file',
'annotations_file',
'images_dir',
'output_file'
])
FLAGS = tf.app.flags.FLAGS
def main(_):
classes = list(filter(None, open(FLAGS.classes_file).read().split('\n')))
classes = {name: idx + 1 for idx, name in enumerate(classes)}
print(f'Classes: {classes}')
class_descriptions = {row[0]: row[1] for _, row in pd.read_csv(FLAGS.class_descriptions_file, header=None).iterrows()}
annotations = pd.read_csv(FLAGS.annotations_file)
annotations['LabelName'] = annotations['LabelName'].map(lambda n: class_descriptions[n])
annotations = annotations.groupby('ImageID')
images = tf.gfile.Glob(FLAGS.images_dir + '/*/*.jpg')
images = map(lambda i: (os.path.basename(i).split('.jpg')[0], i), images)
images = dict(images)
print(f'{len(images)} images')
writer = tf.python_io.TFRecordWriter(FLAGS.output_file)
for image_id, path in images.items():
img_width, img_height = Image.open(path).size
img_data = tf.gfile.GFile(path, 'rb').read()
xmins = []
xmaxs = []
ymins = []
ymaxs = []
classes_text = []
classes_int = []
image_annotations = annotations.get_group(image_id)
for _, row in image_annotations.loc[image_annotations['LabelName'].isin(classes.keys())].iterrows():
xmins.append(row['XMin'])
xmaxs.append(row['XMax'])
ymins.append(row['YMin'])
ymaxs.append(row['YMax'])
classes_text.append(row['LabelName'].encode('utf8'))
classes_int.append(classes[row['LabelName']])
tf_example = tf.train.Example(features=tf.train.Features(feature={
'image/height': tf.train.Feature(int64_list=tf.train.Int64List(value=[img_height])),
'image/width': tf.train.Feature(int64_list=tf.train.Int64List(value=[img_width])),
'image/filename': tf.train.Feature(bytes_list=tf.train.BytesList(value=[image_id.encode('utf8')])),
'image/source_id': tf.train.Feature(bytes_list=tf.train.BytesList(value=[image_id.encode('utf8')])),
'image/encoded': tf.train.Feature(bytes_list=tf.train.BytesList(value=[img_data])),
'image/format': tf.train.Feature(bytes_list=tf.train.BytesList(value=[b'jpg'])),
'image/object/bbox/xmin': tf.train.Feature(float_list=tf.train.FloatList(value=xmins)),
'image/object/bbox/xmax': tf.train.Feature(float_list=tf.train.FloatList(value=xmaxs)),
'image/object/bbox/ymin': tf.train.Feature(float_list=tf.train.FloatList(value=ymins)),
'image/object/bbox/ymax': tf.train.Feature(float_list=tf.train.FloatList(value=ymaxs)),
'image/object/class/text': tf.train.Feature(bytes_list=tf.train.BytesList(value=classes_text)),
'image/object/class/label': tf.train.Feature(int64_list=tf.train.Int64List(value=classes_int))
}))
writer.write(tf_example.SerializeToString())
print('.', end='')
writer.close()
print(" done")
if __name__ == '__main__':
tf.app.run()