-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmain.py
60 lines (58 loc) · 2.38 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
from engines.data import DataManager
from engines.utils.logger import get_logger
from engines.train import train
from engines.predict import Predictor
from engines.utils.word2vec import Word2VecUtils
from engines.utils.Glove import GloveUtils
from engines.utils.FastText import FastTextUtils
from config import mode, classifier_config, word2vec_config, Glove_config, FastText_config, CUDA_VISIBLE_DEVICES
import json
import os
if __name__ == '__main__':
logger = get_logger('./logs')
os.environ['CUDA_VISIBLE_DEVICES'] = str(CUDA_VISIBLE_DEVICES)
if mode == 'train_classifier':
logger.info(json.dumps(classifier_config, indent=2))
data_manage = DataManager(logger)
logger.info('mode: train_classifier')
logger.info('model: {}'.format(classifier_config['classifier']))
train(data_manage, logger)
elif mode == 'interactive_predict':
logger.info(json.dumps(classifier_config, indent=2))
data_manage = DataManager(logger)
logger.info('mode: predict_one')
logger.info('model: {}'.format(classifier_config['classifier']))
predictor = Predictor(data_manage, logger)
predictor.predict_one('warm start')
while True:
logger.info('please input a sentence (enter [exit] to exit.)')
sentence = input()
if sentence == 'exit':
break
results = predictor.predict_one(sentence)
print(results)
elif mode == 'train_word2vec':
logger.info(json.dumps(word2vec_config, indent=2))
logger.info('mode: train_word2vec')
w2v = Word2VecUtils(logger)
w2v.train_word2vec()
elif mode == 'train_Glove':
logger.info(json.dumps(Glove_config, indent=2))
logger.info('mode: train_Glove')
glove = GloveUtils(logger)
glove.TrainGlove()
elif mode == 'train_FastText':
logger.info(json.dumps(FastText_config, indent=2))
logger.info('mode: train_FastText')
ft = FastTextUtils(logger)
ft.TrainFastText()
elif mode == 'test':
logger.info('mode: test')
data_manage = DataManager(logger)
predictor = Predictor(data_manage, logger)
predictor.predict_test()
elif mode == 'save_model':
logger.info('mode: save_pb_model')
data_manage = DataManager(logger)
predictor = Predictor(data_manage, logger)
predictor.save_model()