-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmain_target.py
1064 lines (962 loc) · 66.5 KB
/
main_target.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import shutil
from utils.utils import MySpatialTransform
# from batchgenerators.transforms.spatial_transforms import SpatialTransform
import torch
import torch.nn as nn
import torchvision
import argparse
import random
from tensorboardX import SummaryWriter
import os
import importlib
import json
import numpy as np
from torch.utils.data import DataLoader
from torch.nn import MSELoss,L1Loss
import torch.nn.functional as F
from torch.optim.lr_scheduler import ReduceLROnPlateau
import time
from scipy.ndimage.morphology import binary_dilation, binary_erosion
from utils.utils import plot_slides,BaseDataset,NumpyLoader_Multi, NumpyLoader_Multi_merge,NiiLoader, image_resize,CropResize,CopyField, ExtendSqueeze,Reshape, PadToSize, Clip, Binarize, CenterIntensities, get_parameter_number
from utils.evaluation import dice, avg_ce, KLloss, avg_dsc, binarize, confident_binarize
from utils.saver import Saver
from utils.draw import scatter_plot, scatter_plot_multi
import random
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("prefix", help="prefix")
parser.add_argument("-P","--target_phase", help="target_phase", default='arterial')
parser.add_argument("-G","--GPU", help="GPU", default='0,1,2,3')
parser.add_argument("-b","--batch_size", type=int, help="batch_size",default=4)
parser.add_argument("-E","--max_epoch", type=int, help="max_epoch",default=1600)
parser.add_argument("--save_epoch", type=int, help="save_epoch",default=50)
parser.add_argument("--eval_epoch", type=int, help="eval_epoch",default=50)
parser.add_argument("--turn_epoch", type=int, help="turn_epoch",default=-1)
parser.add_argument("-S","--softrelu", type=int, help="softrelu",default=0)
parser.add_argument("-M","--method", help="method", default='vae_train')
parser.add_argument("--data_root", help="data_root", default='../nih_data/numpy_data/')
parser.add_argument("--val_data_root", help="val_data_root", default='../nih_data/numpy_data/')
parser.add_argument("--pseudo_data_root", help="pseudo_data_root", default='../nih_data/numpy_data/')
parser.add_argument("-l","--data_path", help="data_path", default='Multi_all.json')
parser.add_argument("--train_list", help="train_list", default='NIH_train')
parser.add_argument("--val_list", help="val_list", default='NIH_val')
parser.add_argument("--pseudo_list", help="pseudo_list", default=None)
parser.add_argument("--load_prefix", help="load_prefix", default=None)
parser.add_argument("--checkpoint_name", help="checkpoint_name", default="best_model.ckpt")
parser.add_argument("--load_prefix_vae", help="load_prefix_vae", default=None)
parser.add_argument("--load_prefix_encoder", help="load_prefix_encoder", default=None)
parser.add_argument("--load_prefix_joint", help="load_prefix_joint", default=None)
parser.add_argument("--pan_index", help="pan_index", default='1')
parser.add_argument("--pseudo_pan_index", help="pseudo_pan_index", default='1')
parser.add_argument("--lambda_vae", type=float, help="lambda_vae", default=0.1)
parser.add_argument("--lambda_vae_warmup", type=int, help="save_epoch",default=0)
parser.add_argument("--lr_seg", type=float, help="lr_seg", default=1e-2) # for seg 1e-1
parser.add_argument("--lr_vae", type=float, help="lr_vae", default=0) # for vae 1e-1
parser.add_argument("--test_only", help="test_only", action='store_true')
parser.add_argument("--resume", help="resume", action='store_true')
parser.add_argument("--save_more_reference", help="save_more_reference", action='store_true')
parser.add_argument("--save_eval_result", help="save_more_reference", action='store_true')
parser.add_argument("--no_aug", help="no_aug", action='store_true')
parser.add_argument("--only_pseudo", help="only_pseudo", action='store_true')
parser.add_argument("--fix_layer", help="fix_layer", action='store_true')
parser.add_argument("--use_confident_binarize", help="confident_binarize", action='store_true')
parser.add_argument("--analysis_figure_name", help="analysis_figure_name", default=None)
parser.add_argument("--pseudo_save_epoch", help="pseudo_save_epoch", type=int, default=0)
parser.add_argument("--domain_loss_type", type=int, help="domain_loss_type",default=0)
parser.add_argument("--vae_mont_number", type=int, help="number of times to run the vae network", default=1)
parser.add_argument("--vae_forward_scale", type=float, help="vae_forward_scale",default=0.0)
parser.add_argument("--vae_decoder_dropout", type=float, help="vae_decoder_dropout",default=0.0)
parser.add_argument("--seg_dropout", type=float, help="seg_dropout",default=0.0)
parser.add_argument("--val_finetune", type=int, help="val_finetune", default=0)
parser.add_argument("--lr_finetune", type=float, help="lr_finetune", default=1e-2) # for seg 1e-1
parser.add_argument("--tag", help="tag", action='store_true')
parser.add_argument("--from_scratch", help="Use only in domain adaptation. Train from scratch in the target domain.", action='store_true')
parser.add_argument("--adam", help="adam", action='store_true')
parser.add_argument("--kl", help="use kl loss in domain adaptation", action='store_true')
parser.add_argument("--alpha", type=float, help="alpha", default=0.995)
parser.add_argument("--update_every_iteration", action='store_true')
parser.add_argument("--generate_bounding_boxes", action='store_true')
parser.add_argument("--shift", type=int, default=0)
args = parser.parse_args()
data_root = args.data_root
val_data_root = args.val_data_root
pseudo_data_root = args.pseudo_data_root
lr1 = args.lr_seg
lr2 = args.lr_vae
softrelu = args.softrelu
train_list = args.train_list
val_list = args.val_list
pseudo_list = args.pseudo_list
torch.backends.cudnn.benchmark = True
weight_decay = 0
num_workers = 16
trainbatch = args.batch_size
valbatch = 1
load_prefix = args.load_prefix
checkpoint_name = args.checkpoint_name
load_prefix_vae = args.load_prefix_vae
load_prefix_encoder = args.load_prefix_encoder
load_prefix_joint = args.load_prefix_joint
load_epoch_seg = 240
load_epoch = 60
prefix = args.prefix
data_path = os.path.join('lists',args.data_path)
os.environ['CUDA_VISIBLE_DEVICES'] = args.GPU
save_root_path = '3dmodel'
save_path = '3dmodel/'+prefix
if not os.path.exists(save_path): os.mkdir(save_path)
display_path = 'tensorboard/'+prefix
middle_path = 'domain_cache/'+prefix
result_path = 'result/'+prefix
max_epoch = args.max_epoch
save_epoch = args.save_epoch
eval_epoch = args.eval_epoch
turn_epoch = args.turn_epoch
assert save_epoch % eval_epoch == 0
assert turn_epoch % eval_epoch == 0 or turn_epoch == -1
pan_index = args.pan_index
if pan_index != '10':
mask_index = [[0,0]] + [[int(f), idx+1] for idx,f in enumerate(pan_index.split(','))]
else:
mask_index = [[0,0], [[1,2], 1]]
pseudo_pan_index = args.pseudo_pan_index
if pseudo_pan_index != '10':
pseudo_mask_index = [[0,0]] + [[int(f), idx+1] for idx,f in enumerate(pseudo_pan_index.split(','))]
else:
pseudo_mask_index = [[0,0], [[1,2], 1]]
target_phase = args.target_phase
lambda_vae = args.lambda_vae
lambda_vae_warmup = args.lambda_vae_warmup
test_only = args.test_only
resume = args.resume
method = args.method
save_more_reference = args.save_more_reference
save_eval_result = args.save_eval_result
only_pseudo = args.only_pseudo
fix_layer = args.fix_layer
use_confident_binarize = args.use_confident_binarize
analysis_figure_name = args.analysis_figure_name
domain_loss_type = args.domain_loss_type
vae_mont_number = args.vae_mont_number
vae_forward_scale = args.vae_forward_scale
if vae_mont_number != 1: assert vae_forward_scale != 0.0
vae_decoder_dropout = args.vae_decoder_dropout
seg_dropout = args.seg_dropout
val_finetune = args.val_finetune
lr_finetune = args.lr_finetune
if save_eval_result and not os.path.exists(result_path):
os.mkdir(result_path)
if analysis_figure_name != None:
assert test_only
no_aug = args.no_aug
tag = args.tag
from_scratch = args.from_scratch
if from_scratch:
assert method == 'domain_adaptation'
assert not test_only
adam = args.adam
kl = args.kl
if kl:
assert method == 'domain_adaptation'
assert domain_loss_type == 0 or domain_loss_type == 8
alpha = args.alpha
update_every_iteration = args.update_every_iteration
pseudo_save_epoch = args.pseudo_save_epoch
if update_every_iteration: assert pseudo_save_epoch == 1
generate_bounding_boxes = args.generate_bounding_boxes
if generate_bounding_boxes: assert method == 'domain_adaptation'
shift = args.shift
input_phases=['venous']
output_keys=['venous']
input_phases_mask = input_phases + [f+'_mask' for f in input_phases] + [f+'_origin' for f in input_phases]+ [f+'_lung' for f in input_phases] + [f+'_pancreas' for f in input_phases]
input_size=[256,256,256]
patch_size=[128,128,128]
pad_size = [0,0,0]
## define trainer myself
def filedict_from_json(json_path, key, epoch=1):
with open(json_path, 'r') as f:
json_dict = json.load(f)
listdict = json_dict.get(key, [])
output = []
for i in range(epoch):
output += listdict
return output
if __name__ == "__main__":
## dataset
train_data_list = filedict_from_json(data_path, train_list, eval_epoch)
transforms = {'train': []}
## define training data pipeline
transforms['train'].append(NumpyLoader_Multi_merge(fields=input_phases, root_dir=data_root, load_mask=True, mask_index=mask_index))
transforms['train'].append(CropResize(fields=input_phases, output_size=patch_size, shift=shift))
#transforms['train'].append(PadToSize(fields=input_phases, size=input_size, pad_val=-1024, seg_pad_val=0,random_subpadding=True,load_mask=method=='seg_train'))
if not no_aug:
transforms['train'].append(Reshape(fields=input_phases_mask))
transforms['train'].append(MySpatialTransform(patch_size,[dis//2-5 for dis in patch_size], random_crop=True,
scale=(0.85,1.15),
do_elastic_deform=False, alpha=(0,500),
do_rotation=True, sigma=(10,30.),
angle_x=(-0.2,0.2), angle_y=(-0.2, 0.2),
angle_z=(-0.2, 0.2),
border_mode_data="constant",
border_cval_data=-1024,
data_key="venous", p_el_per_sample=0,label_key="venous_pancreas",
p_scale_per_sample=1, p_rot_per_sample=1))
#transforms['train'].append(PadToSize(fields=input_phases, size=[1,1]+patch_size, pad_val=-1024, seg_pad_val=0,random_subpadding=True,load_mask=method=='seg_train'))
for phase in input_phases:
transforms['train'].append(CopyField(fields=[phase], to_field=[phase+'_origin']))
transforms['train'].append(Clip(fields=input_phases,new_min=-200, new_max=400))
transforms['train'].append(CenterIntensities(fields=input_phases,subtrahend=100, divisor=300))
transforms['train'].append(Reshape(fields=input_phases_mask, reshape_view=[-1]+patch_size))
## dataset
if pseudo_list is not None:
pseudo_data_list = filedict_from_json(data_path, pseudo_list, eval_epoch)
# print(train_data_list)
transforms['pseudo']=[]
transforms['pseudo'].append(NumpyLoader_Multi_merge(fields=input_phases, root_dir=pseudo_data_root, load_mask=True, mask_index=pseudo_mask_index))
transforms['pseudo'].append(CropResize(fields=input_phases, output_size=patch_size))
#transforms['train'].append(PadToSize(fields=input_phases, size=input_size, pad_val=-1024, seg_pad_val=0,random_subpadding=True,load_mask=method=='seg_train'))
if not no_aug:
transforms['pseudo'].append(Reshape(fields=input_phases_mask))
transforms['pseudo'].append(MySpatialTransform(patch_size,[dis//2-5 for dis in patch_size], random_crop=True,
scale=(0.85,1.15),
do_elastic_deform=False, alpha=(0,500),
do_rotation=True, sigma=(10,30.),
angle_x=(-0.2,0.2), angle_y=(-0.2, 0.2),
angle_z=(-0.2, 0.2),
border_mode_data="constant",
border_cval_data=-1024,
data_key="venous", p_el_per_sample=0,label_key="venous_pancreas",
p_scale_per_sample=1, p_rot_per_sample=1))
#transforms['train'].append(PadToSize(fields=input_phases, size=[1,1]+patch_size, pad_val=-1024, seg_pad_val=0,random_subpadding=True,load_mask=method=='seg_train'))
for phase in input_phases:
transforms['pseudo'].append(CopyField(fields=[phase], to_field=[phase+'_origin']))
transforms['pseudo'].append(Clip(fields=input_phases,new_min=-200, new_max=400))
transforms['pseudo'].append(CenterIntensities(fields=input_phases,subtrahend=100, divisor=300))
transforms['pseudo'].append(Reshape(fields=input_phases_mask, reshape_view=[-1]+patch_size))
val_data_list = filedict_from_json(data_path, val_list)
transforms['val']=[]
## define validation data pipeline
transforms['val'].append(NumpyLoader_Multi_merge(fields=input_phases, root_dir=val_data_root,load_mask=True,mask_index=mask_index))
transforms['val'].append(CropResize(fields=input_phases,output_size=patch_size, shift=shift))
#transforms['val'].append(PadToSize(fields=input_phases, size=input_size, pad_val=-1024, seg_pad_val=0,random_subpadding=False,load_mask=True))
for phase in input_phases:
transforms['val'].append(CopyField(fields=[phase], to_field=[phase+'_origin']))
transforms['val'].append(Clip(fields=input_phases,new_min=-200, new_max=400))
transforms['val'].append(CenterIntensities(fields=input_phases,subtrahend=100, divisor=300))
transforms['val'].append(Reshape(fields=input_phases_mask, reshape_view=[-1]+patch_size))
if method == "discriminator_train":
transforms = {'train': []}
## define training data pipeline
transforms['train'].append(NumpyLoader_Multi_merge(fields=input_phases, root_dir=data_root, load_seg_npy=True, mask_index=mask_index))
if not no_aug:
transforms['train'].append(Reshape(fields=input_phases_mask))
transforms['train'].append(MySpatialTransform(patch_size,[dis//2-5 for dis in patch_size], random_crop=True,
scale=(0.85,1.15),
do_elastic_deform=False, alpha=(0,500),
do_rotation=True, sigma=(10,30.),
angle_x=(-0.2,0.2), angle_y=(-0.2, 0.2),
angle_z=(-0.2, 0.2),
border_mode_data="constant",
border_cval_data=-1024,
data_key="venous", p_el_per_sample=0,label_key="venous_pancreas",
p_scale_per_sample=1, p_rot_per_sample=1))
transforms['train'].append(Reshape(fields=input_phases_mask, reshape_view=[-1]+patch_size))
val_data_list = filedict_from_json(data_path, val_list)
transforms['val']=[]
## define validation data pipeline
transforms['val'].append(NumpyLoader_Multi_merge(fields=input_phases, root_dir=val_data_root,load_seg_npy=True,mask_index=mask_index))
transforms['val'].append(Reshape(fields=input_phases_mask, reshape_view=[-1]+patch_size))
for k,v in transforms.items():
transforms[k] = torchvision.transforms.Compose(v)
###############################################################################################
############################ Create Datasets ##################################################
###############################################################################################
print("Loading data.")
train_dataset = BaseDataset(train_data_list, transforms=transforms['train'])
val_dataset = BaseDataset(val_data_list, transforms=transforms['val'])
if pseudo_list is not None:
pseudo_dataset = BaseDataset(pseudo_data_list, transforms=transforms['pseudo'])
train_loader = DataLoader(train_dataset, batch_size=trainbatch, shuffle=True, num_workers=num_workers, drop_last=True, pin_memory=True)
val_loader = DataLoader(val_dataset, batch_size=valbatch, shuffle=False, num_workers=num_workers, pin_memory=True)
if pseudo_list is not None:
pseudo_loader = DataLoader(pseudo_dataset, batch_size=trainbatch, shuffle=True, num_workers=num_workers, drop_last=True, pin_memory=True)
if save_more_reference:
train_loader_2 = DataLoader(train_dataset, batch_size=valbatch, shuffle=False, num_workers=num_workers, pin_memory=True)
## model build and load
print("Building model.")
models = importlib.import_module('joint_model')
# vm_model = importlib.import_module('models.' + 'voxelmorph3D_joint')
if method=='vae_train':
model=models.VAE(n_channels=len(mask_index), n_class=len(mask_index),norm_type=1,dim=128,soft=softrelu==1)
elif method == 'discriminator_train':
model = models.Encoder(n_channels=1, dim=1, norm_type=1)
elif method == 'domain_adaptation':
model=[]
model.append(models.Segmentation(n_channels=1, n_class=len(mask_index),norm_type=1))
model.append(models.VAE(n_channels=len(mask_index), n_class=len(mask_index),norm_type=1,dim=128))
model = models.Joint(models=model, vae_forward_scale=vae_forward_scale, vae_decoder_dropout=vae_decoder_dropout)
model_fix=[]
model_fix.append(models.Segmentation(n_channels=1, n_class=len(mask_index),norm_type=1))
model_fix.append(models.VAE(n_channels=len(mask_index), n_class=len(mask_index),norm_type=1,dim=128))
model_fix = models.Joint(models=model_fix)
if val_finetune != 0:
model_finetune=[]
model_finetune.append(models.Segmentation(n_channels=1, n_class=len(mask_index),norm_type=1))
model_finetune.append(models.VAE(n_channels=len(mask_index), n_class=len(mask_index),norm_type=1,dim=128))
model_finetune = models.Joint(models=model_finetune)
for param in model_finetune.Vae.parameters():
param.requires_grad = False
model_finetune.Vae.eval()
elif method == 'domain_adaptation_dis':
model=[]
model.append(models.Segmentation(n_channels=1, n_class=len(mask_index),norm_type=1))
model.append(models.Encoder(n_channels=1, dim=1, norm_type=1))
model = models.Joint2(models=model)
model_fix = models.Segmentation(n_channels=1, n_class=len(mask_index),norm_type=1)
else:
raise ValueError("Try a valid method.")
model = model.cuda()
if adam:
optimizer = torch.optim.Adam(model.parameters(),
lr=lr1,betas=(0.9, 0.999),weight_decay = weight_decay)
else:
optimizer = torch.optim.SGD(model.parameters(),
lr=lr1,weight_decay = weight_decay,momentum=0.9)
print("Loading prefix.")
if load_prefix:
register_model_path = os.path.join(save_root_path, load_prefix, checkpoint_name)
if method=="seg_train":
model.load_state_dict(torch.load(register_model_path)['model_state_dict'])
else:
if from_scratch:
model_fix.Seg.load_state_dict(torch.load(register_model_path)['model_state_dict'])
else:
model.Seg.load_state_dict(torch.load(register_model_path)['model_state_dict'])
if method == 'domain_adaptation_dis':
model_fix.load_state_dict(model.Seg.state_dict())
if load_prefix_vae:
register_model_path = save_root_path+'/'+load_prefix_vae+'/best_model.ckpt'
if from_scratch:
model_fix.Vae.load_state_dict(torch.load(register_model_path)['model_state_dict'])
model.Vae.load_state_dict(torch.load(register_model_path)['model_state_dict'])
'''
pretrained_dict = torch.load(register_model_path)['model_state_dict']
model_dict = register_model.segmentation_model.state_dict()
pretrained_dict = {k.split('.',1)[1]: v for k, v in pretrained_dict.items() if k.split('.',1)[0]=='segmentation_model' and k.split('.',1)[1] in model_dict}
model_dict.update(pretrained_dict)
register_model.segmentation_model.load_state_dict(model_dict)
register_model.segmentation_model.eval()
'''
if method == "domain_adaptation" and test_only:
model_fix.load_state_dict(model.state_dict())
if load_prefix_encoder:
register_model_path = save_root_path+'/'+load_prefix_encoder+'/best_model.ckpt'
if method == 'discriminator_train':
model.load_state_dict(torch.load(register_model_path)['model_state_dict'])
else:
print("Loading domain-dis discriminator.")
model.Dis.load_state_dict(torch.load(register_model_path)['model_state_dict'])
if load_prefix_joint:
register_model_path = save_root_path+'/'+load_prefix_joint+'/best_model.ckpt'
model.load_state_dict(torch.load(register_model_path)['model_state_dict'])
if method=='joint_train' or method=='domain_adaptation':
for param in model.Vae.parameters():
param.requires_grad = False
model.Vae.eval()
if fix_layer:
for param in model.Seg.parameters():
param.requires_grad = False
for param in model.Seg.up5.parameters():
param.requires_grad = True
for param in model.Seg.out_block.parameters():
param.requires_grad = True
if method == 'domain_adaptation_dis':
for param in model.Dis.parameters():
param.requires_grad = False
model.Dis.eval()
if method=='refine_vae':
Encoder_list = ['in_block','down1','down2','down3','down4','down5','fc_mean','fc_std']
for param_name,param in model.Vae.named_parameters():
if param_name.split('.')[0] in Encoder_list:
param.requires_grad = False
else:
param.requires_grad = True
if method == 'domain_adaptation':
if only_pseudo:
tmp = model_fix
model_fix = model
model = tmp
else:
if not test_only and not from_scratch:
model_fix.load_state_dict(model.state_dict())
if method == 'domain_adaptation' or method == 'domain_adaptation_dis':
for param in model_fix.parameters():
param.requires_grad = False
model_fix.eval()
final_model_parallel = nn.DataParallel(model).cuda()
if method == 'domain_adaptation' or method == 'domain_adaptation_dis': model_fix_parallel = nn.DataParallel(model_fix).cuda()
if val_finetune != 0: model_finetune_parallel = nn.DataParallel(model_finetune).cuda()
label_key = 'venous_pancreas'
img_key = 'venous'
best_result = 0
train_dis = 0
max_idx_in_epoch = 0
saver = Saver(display_dir=display_path,display_freq=10)
MSE_Loss = MSELoss()
# get_parameter_number(model)
# get_parameter_number(model.Seg)
# get_parameter_number(model.Vae)
# get_parameter_number(model_fix)
## training loop
print("Start training")
if pseudo_list is not None: pseudo_itr = iter(pseudo_loader)
for epoch in range(max_epoch // eval_epoch):
if not test_only:
for idx, batch in enumerate(train_loader):
if idx > max_idx_in_epoch:
max_idx_in_epoch = idx
#optimizer.param_groups[0]['lr'] = lr3/(10**(epoch//10))
#for out_list in range(len(output_keys)):
optimizer.zero_grad()
# forward + backward + optimize
if method =='vae_train':
batch[label_key+'_only'] = batch[label_key].type(torch.cuda.LongTensor)
one_hot = torch.cuda.FloatTensor(batch[label_key+'_only'].size(0),len(mask_index),batch[label_key+'_only'].size(2),batch[label_key+'_only'].size(3),batch[label_key+'_only'].size(4)).zero_()
batch[label_key+'_only'] = one_hot.scatter_(1,batch[label_key+'_only'].data,1)
batch[label_key+'_recon'],batch['mean'],batch['std'] = final_model_parallel(batch[label_key+'_only'],if_random=True,scale=0.35) #0.2
h=batch[label_key+'_only'][0:1,0:1,:,:,:].shape[4]
batch[label_key+'_display'] = torch.cat((batch[label_key+'_only'][0:1,0:1,:,:,h//2], \
batch[label_key+'_only'][0:1,1:2,:,:,h//2],batch[label_key+'_recon'][0:1,1:2,:,:,h//2]), dim=0)
#batch = register_model(batch)
'''
final_loss = standard_loss(batch, do_mask=True, source_label_key='align_img', target_label_key='dummy_img', mask_label_key='source_mask')*(1-beta) + \
(standard_loss(batch, do_mask=True, source_label_key='target', target_label_key='dummy_img', mask_label_key='source_mask') + \
standard_loss(batch, do_mask=True, source_label_key='align_img', target_label_key='source', mask_label_key='source_mask'))*beta/2
'''
klloss = KLloss(batch)
dsc_loss = 1-avg_dsc(batch,source_key=label_key+'_recon', target_key=label_key+'_only',botindex=1,topindex=len(mask_index))
final_loss = dsc_loss+0.00002*klloss
loss = []
display_image={}
loss.append(['dice_loss',dsc_loss.item()])
loss.append(['kl_loss',klloss.item()])
loss.append(['lr',optimizer.param_groups[0]['lr']])
display_image.update({label_key+'_display':batch[label_key+'_display']})
saver.write_display(idx+epoch*(max_idx_in_epoch+1),loss,display_image)
if method == 'discriminator_train':
batch[label_key+'_only'] = batch[label_key].type(torch.cuda.FloatTensor)
score = batch['venous_score'].type(torch.cuda.FloatTensor)
score_out = final_model_parallel(batch[label_key+'_only'])
final_loss = torch.square(score - score_out).mean()
# import pdb; pdb.set_trace()
loss = []
loss.append(['final_loss',final_loss.item()])
loss.append(['score_out',score_out[0].item()])
saver.write_display(idx+epoch*(max_idx_in_epoch+1),loss)
if method =='domain_adaptation' and pseudo_list is None:
if epoch == 0: continue
if pseudo_save_epoch != 0 and epoch % (pseudo_save_epoch // eval_epoch) == 0:
if idx % (len(train_loader) / eval_epoch) == 0 or update_every_iteration:
if not update_every_iteration: print("Updating Network")
# model_fix.load_state_dict(model.state_dict())
sd_teacher = model_fix.Seg.state_dict()
sd_student = model.Seg.state_dict()
for key in sd_student:
sd_teacher[key] = alpha * sd_teacher[key] + (1 - alpha) * sd_student[key]
model_fix.Seg.load_state_dict(sd_teacher)
# if tag: lambda_vae /= 10
if tag: lambda_vae = alpha * lambda_vae
batch[label_key+'_only'] = batch[label_key].type(torch.cuda.LongTensor)
one_hot = torch.cuda.FloatTensor(batch[label_key+'_only'].size(0),len(mask_index),batch[label_key+'_only'].size(2),batch[label_key+'_only'].size(3),batch[label_key+'_only'].size(4)).zero_()
batch[label_key+'_only'] = one_hot.scatter_(1,batch[label_key+'_only'].data,1)
batch[img_key] = batch[img_key].cuda()
total_recon_loss = 0.0
total_dice_loss_fake = 0.0
total_dice_loss = 0.0
total_final_loss = 0.0
for i in range(vae_mont_number):
batch = final_model_parallel(batch,img_key,label_key+'_pred',label_key+'_recon_pred',dropout=True)
batch = model_fix_parallel(batch,img_key,label_key+'_only_fake',label_key+'_asdfasdf')
h=batch[label_key+'_pred'][0:1,0:1,:,:,:].shape[4]
if use_confident_binarize:
batch[label_key+'_only_fake'] = confident_binarize(batch[label_key+'_only_fake'])
else:
batch[label_key+'_only_fake'] = binarize(batch[label_key+'_only_fake'])
batch[label_key+'_display']= torch.cat((batch[label_key+'_recon_pred'][0:1,1:2,:,:,h//2], \
batch[label_key+'_only'][0:1,1:2,:,:,h//2],batch[label_key+'_pred'][0:1,1:2,:,:,h//2], \
batch[label_key+'_only_fake'][0:1,1:2,:,:,h//2]), dim=0)
recon_loss = 1 - avg_dsc(batch,source_key=label_key+'_pred', target_key=label_key+'_recon_pred',botindex=1,topindex=len(mask_index),return_mean=True)
klloss = KLloss(batch)
dsc_loss = 1 - avg_dsc(batch,source_key=label_key+'_pred', target_key=label_key+'_only',botindex=1,topindex=len(mask_index),return_mean=True)
dsc_loss_fake = 1 - avg_dsc(batch,source_key=label_key+'_pred', target_key=label_key+'_only_fake',botindex=1,topindex=len(mask_index),return_mean=True)
if only_pseudo:
final_loss = dsc_loss_fake
elif domain_loss_type == 8 or domain_loss_type == 15 or domain_loss_type == 16:
if recon_loss < 0.15: cur_lambda = lambda_vae * 0.6
elif recon_loss < 0.225: cur_lambda = lambda_vae * 1.2
elif recon_loss < 0.3: cur_lambda = lambda_vae * 2.0
else: cur_lambda = lambda_vae * 3.0
if cur_lambda > 1:
if kl: final_loss = recon_loss + klloss + 1 / cur_lambda * dsc_loss_fake
else: final_loss = recon_loss + 1 / cur_lambda * dsc_loss_fake
else:
if kl: final_loss = cur_lambda * (recon_loss + klloss) + dsc_loss_fake
else: final_loss = cur_lambda * recon_loss + dsc_loss_fake
elif domain_loss_type == 9:
if recon_loss < 0.15: cur_lambda = lambda_vae * 0.6
elif recon_loss < 0.225: cur_lambda = lambda_vae * 1.2
elif recon_loss < 0.3: cur_lambda = lambda_vae * 2.0
else: cur_lambda = lambda_vae * 3.0
final_loss = (cur_lambda * recon_loss + dsc_loss_fake) / (1 + cur_lambda)
elif domain_loss_type == 10:
loss_square = torch.mean(torch.square(val_batch[label_key+'_pred']))
final_loss = loss_square + recon_loss + dsc_loss_fake
print(final_loss)
elif domain_loss_type == 11:
final_loss = lambda_vae * recon_loss + dsc_loss_fake + recon_loss * dsc_loss_fake
elif domain_loss_type == 12:
final_loss = lambda_vae * recon_loss + dsc_loss_fake - recon_loss * dsc_loss_fake
elif domain_loss_type == 13:
recon_loss -= 0.15
recon_loss[recon_loss < 0] = 0
final_loss = lambda_vae * recon_loss
elif domain_loss_type == 14:
recon_loss -= 0.1
recon_loss[recon_loss < 0] = 0
final_loss = lambda_vae * recon_loss + dsc_loss_fake
elif turn_epoch != -1:
if (epoch // turn_epoch) % 2 == 0:
final_loss = lambda_vae * recon_loss
else:
final_loss = lambda_vae * recon_loss + dsc_loss_fake
elif epoch >= lambda_vae_warmup:
final_loss = lambda_vae * recon_loss + dsc_loss_fake
if kl: final_loss += 0.00002 * lambda_vae * klloss
else:
final_loss = lambda_vae * epoch / lambda_vae_warmup * recon_loss + dsc_loss_fake
total_recon_loss += recon_loss
total_dice_loss_fake += dsc_loss_fake
total_dice_loss += dsc_loss
total_final_loss += final_loss
recon_loss = total_recon_loss / vae_mont_number
dsc_loss_fake = total_dice_loss_fake / vae_mont_number
dsc_loss = total_dice_loss / vae_mont_number
final_loss = total_final_loss / vae_mont_number
loss = []
display_image={}
loss.append(['recon_loss',recon_loss.item()])
loss.append(['kl_loss', klloss.item()])
loss.append(['dice_loss_fake',dsc_loss_fake.item()])
loss.append(['dice_loss',dsc_loss.item()])
loss.append(['final_loss',final_loss.item()])
loss.append(['lr',optimizer.param_groups[0]['lr']])
display_image.update({label_key+'_display':batch[label_key+'_display']})
saver.write_display(idx+epoch*(max_idx_in_epoch+1),loss,display_image)
if method =='domain_adaptation' and pseudo_list is not None:
if epoch == 0: continue
batch[label_key+'_only'] = batch[label_key].type(torch.cuda.LongTensor)
one_hot = torch.cuda.FloatTensor(batch[label_key+'_only'].size(0),len(mask_index),batch[label_key+'_only'].size(2),batch[label_key+'_only'].size(3),batch[label_key+'_only'].size(4)).zero_()
batch[label_key+'_only'] = one_hot.scatter_(1,batch[label_key+'_only'].data,1)
batch[img_key] = batch[img_key].cuda()
batch = final_model_parallel(batch,img_key,label_key+'_pred',label_key+'_recon_pred',dropout=True)
batch = model_fix_parallel(batch,img_key,label_key+'_only_fake',label_key+'_asdfasdf')
h=batch[label_key+'_pred'][0:1,0:1,:,:,:].shape[4]
if use_confident_binarize:
batch[label_key+'_only_fake'] = confident_binarize(batch[label_key+'_only_fake'])
else:
batch[label_key+'_only_fake'] = binarize(batch[label_key+'_only_fake'])
batch[label_key+'_display']= torch.cat((batch[label_key+'_recon_pred'][0:1,1:2,:,:,h//2], \
batch[label_key+'_only'][0:1,1:2,:,:,h//2],batch[label_key+'_pred'][0:1,1:2,:,:,h//2], \
batch[label_key+'_only_fake'][0:1,1:2,:,:,h//2]), dim=0)
if pseudo_save_epoch != 0 and epoch % pseudo_save_epoch == 0:
model_fix.load_state_dict(model.state_dict())
if tag: lambda_vae /= 10
recon_loss = 1 - avg_dsc(batch,source_key=label_key+'_pred', target_key=label_key+'_recon_pred',botindex=1,topindex=len(mask_index),return_mean=True)
dsc_loss = 1 - avg_dsc(batch,source_key=label_key+'_pred', target_key=label_key+'_only',botindex=1,topindex=len(mask_index),return_mean=True)
dsc_loss_fake = 1 - avg_dsc(batch,source_key=label_key+'_pred', target_key=label_key+'_only_fake',botindex=1,topindex=len(mask_index),return_mean=True)
if domain_loss_type == 8:
if recon_loss < 0.15: cur_lambda = lambda_vae * 0.6
elif recon_loss < 0.225: cur_lambda = lambda_vae * 1.2
elif recon_loss < 0.3: cur_lambda = lambda_vae * 2.0
else: cur_lambda = lambda_vae * 3.0
if cur_lambda > 1:
final_loss = recon_loss + 1 / cur_lambda * dsc_loss_fake
else:
final_loss = cur_lambda * recon_loss + dsc_loss_fake
elif lambda_vae >= 1000:
final_loss = recon_loss * lambda_vae / 10000
else:
final_loss = lambda_vae * recon_loss + dsc_loss_fake
loss = []
display_image={}
loss.append(['lr',optimizer.param_groups[0]['lr']])
loss.append(['recon_loss',recon_loss.item()])
loss.append(['dice_loss_fake',dsc_loss_fake.item()])
loss.append(['dice_loss',dsc_loss.item()])
loss.append(['final_loss',final_loss.item()])
display_image.update({label_key+'_display':batch[label_key+'_display']})
optimizer.zero_grad()
final_loss.backward()
optimizer.step()
# --------------------------------------------------------------------------------- #
batch = next(pseudo_itr, None)
if batch is None:
pseudo_itr = iter(pseudo_loader)
batch = next(pseudo_itr)
batch[label_key+'_only'] = batch[label_key].type(torch.cuda.LongTensor)
one_hot = torch.cuda.FloatTensor(batch[label_key+'_only'].size(0),len(mask_index),batch[label_key+'_only'].size(2),batch[label_key+'_only'].size(3),batch[label_key+'_only'].size(4)).zero_()
batch[label_key+'_only'] = one_hot.scatter_(1,batch[label_key+'_only'].data,1)
batch[img_key] = batch[img_key].cuda()
batch = final_model_parallel(batch,img_key,label_key+'_pred',label_key+'_recon_pred',dropout=True)
h=batch[label_key+'_pred'][0:1,0:1,:,:,:].shape[4]
batch[label_key+'_display']= torch.cat((batch[label_key+'_recon_pred'][0:1,1:2,:,:,h//2], \
batch[label_key+'_only'][0:1,1:2,:,:,h//2],batch[label_key+'_pred'][0:1,1:2,:,:,h//2]), dim=0)
recon_loss = 1 - avg_dsc(batch,source_key=label_key+'_pred', target_key=label_key+'_recon_pred',botindex=1,topindex=len(mask_index),return_mean=True)
dsc_loss = 1 - avg_dsc(batch,source_key=label_key+'_pred', target_key=label_key+'_only',botindex=1,topindex=len(mask_index),return_mean=True)
final_loss = dsc_loss
loss.append(['recon_loss_pseudo',recon_loss.item()])
loss.append(['dice_loss_pseudo',dsc_loss.item()])
loss.append(['final_loss_pseudo',final_loss.item()])
display_image.update({label_key+'_display_pseudo':batch[label_key+'_display']})
saver.write_display(idx+epoch*(max_idx_in_epoch+1),loss,display_image)
if method =='domain_adaptation_dis' and pseudo_list is None:
if epoch == 0: continue
batch[label_key+'_only'] = batch[label_key].type(torch.cuda.LongTensor)
one_hot = torch.cuda.FloatTensor(batch[label_key+'_only'].size(0),len(mask_index),batch[label_key+'_only'].size(2),batch[label_key+'_only'].size(3),batch[label_key+'_only'].size(4)).zero_()
batch[label_key+'_only'] = one_hot.scatter_(1,batch[label_key+'_only'].data,1)
batch[img_key] = batch[img_key].cuda()
batch = final_model_parallel(batch, img_key, label_key+'_pred', label_key+'_score', dropout=True)
batch = model_fix_parallel(batch, img_key, label_key+'_only_fake')
h=batch[label_key+'_pred'][0:1,0:1,:,:,:].shape[4]
if use_confident_binarize:
batch[label_key+'_only_fake'] = confident_binarize(batch[label_key+'_only_fake'])
else:
batch[label_key+'_only_fake'] = binarize(batch[label_key+'_only_fake'])
batch[label_key+'_display']= torch.cat((batch[label_key+'_only'][0:1,1:2,:,:,h//2], \
batch[label_key+'_pred'][0:1,1:2,:,:,h//2], batch[label_key+'_only_fake'][0:1,1:2,:,:,h//2]), dim=0)
if pseudo_save_epoch != 0 and epoch % pseudo_save_epoch == 0:
model_fix.load_state_dict(model.state_dict())
if tag: lambda_vae /= 10
dsc_loss = 1 - avg_dsc(batch,source_key=label_key+'_pred', target_key=label_key+'_only',botindex=1,topindex=len(mask_index),return_mean=True)
dsc_loss_fake = 1 - avg_dsc(batch,source_key=label_key+'_pred', target_key=label_key+'_only_fake',botindex=1,topindex=len(mask_index),return_mean=True)
discriminator_loss = 1 - batch[label_key+'_score'].mean()
final_loss = lambda_vae * discriminator_loss + dsc_loss_fake
if epoch >= lambda_vae_warmup:
final_loss = lambda_vae * discriminator_loss + dsc_loss_fake
else:
final_loss = lambda_vae * epoch / lambda_vae_warmup * discriminator_loss + dsc_loss_fake
loss = []
display_image={}
loss.append(['discriminator_loss',discriminator_loss.item()])
loss.append(['dice_loss_fake',dsc_loss_fake.item()])
loss.append(['dice_loss',dsc_loss.item()])
loss.append(['final_loss',final_loss.item()])
loss.append(['lr',optimizer.param_groups[0]['lr']])
display_image.update({label_key+'_display':batch[label_key+'_display']})
saver.write_display(idx+epoch*(max_idx_in_epoch+1),loss,display_image)
optimizer.zero_grad()
final_loss.backward()
optimizer.step()
# print statistics
if method =='vae_train':
print('[%3d, %3d] loss: %.4f, %.4f' %
((epoch+1)*eval_epoch, idx + 1, dsc_loss.item(),klloss.item()))
if method == 'discriminator_train':
print('[%3d, %3d] loss: %.4f, %.4f, %.4f' %
((epoch+1)*eval_epoch, idx + 1, score[0], score_out[0].item(), final_loss.item()))
if method == 'domain_adaptation':
print('[%3d, %3d] loss: %.4f, %.4f, %.4f' %
((epoch+1)*eval_epoch, idx + 1, recon_loss.item(), dsc_loss_fake.item(), dsc_loss.item()))
if method == 'domain_adaptation_dis':
print('[%3d, %3d] loss: %.4f, %.4f, %.4f' %
((epoch+1)*eval_epoch, idx + 1, discriminator_loss.item(), dsc_loss_fake.item(), dsc_loss.item()))
print("Ready validation")
# epoch 4 weird
# validation
if (epoch+1) % 1 == 0 or test_only:
print("Start evaluation")
model.eval()
# model.Vae.eval()
# model.train()
# model.Vae.train()
score = {}
score_figure = {}
score_figure_gt = {}
score_figure_pseudo = {}
if method =='vae_train':
dsc_pancreas = 0.0
with torch.no_grad():
for val_idx,val_batch in enumerate(val_loader):
val_batch[label_key+'_only'] = val_batch[label_key].type(torch.cuda.LongTensor)
one_hot = torch.cuda.FloatTensor(val_batch[label_key+'_only'].size(0),len(mask_index),val_batch[label_key+'_only'].size(2),val_batch[label_key+'_only'].size(3),val_batch[label_key+'_only'].size(4)).zero_()
val_batch[label_key+'_only'] = one_hot.scatter_(1,val_batch[label_key+'_only'].data,1)
val_batch[label_key+'_recon'],_,_ = model(val_batch[label_key+'_only'],if_random=False)
if save_more_reference and val_idx == epoch % len(val_loader):
h=val_batch[label_key+'_only'][0:1,0:1,:,:,:].shape[4]
val_batch[label_key+'_display']= torch.cat((val_batch[label_key+'_only'][0:1,0:1,:,:,h//2], \
val_batch[label_key+'_only'][0:1,1:2,:,:,h//2],val_batch[label_key+'_recon'][0:1,1:2,:,:,h//2]), dim=0)
score[val_idx] = avg_dsc(val_batch,source_key=label_key+'_recon', target_key=label_key+'_only',binary=True,botindex=1,topindex=len(mask_index)).item()
dsc_pancreas += score[val_idx]
dsc_pancreas /= (val_idx+1)
if method == 'discriminator_train':
dsc_pancreas = 0.0
display_image = None
with torch.no_grad():
for val_idx,val_batch in enumerate(val_loader):
val_batch[label_key+'_only'] = val_batch[label_key].type(torch.cuda.FloatTensor)
score_real = val_batch['venous_score'].type(torch.cuda.FloatTensor)
score_out = final_model_parallel(val_batch[label_key+'_only'])
final_loss = torch.square(score_real - score_out).mean()
score[val_idx] = final_loss.item()
dsc_pancreas += 1 - final_loss.item()
dsc_pancreas /= (val_idx + 1)
if method =='seg_train' or method =='joint_train' or method == 'domain_adaptation' or method == 'domain_adaptation_dis' or method =='sep_joint_train' or method =='embed_train' or method =='refine_vae':
dsc_pancreas = 0.0
if val_finetune != 0:
dsc_pancreas_noft = 0.0
score_noft = {}
loss_gt = 0.0
loss_recon = 0.0
loss_fake = 0.0
display_image = {}
# with torch.no_grad():
time1 = time.time()
for val_idx,val_batch in enumerate(val_loader):
# if val_idx == 12: print("\n\n\n\n\n", val_batch['id'], "\n\n\n\n\n")
if val_finetune != 0:
model_finetune.load_state_dict(model.state_dict())
if epoch != 0 or test_only:
for i in range(val_finetune):
# batch = val_batch
val_batch[label_key+'_only'] = val_batch[label_key].type(torch.cuda.LongTensor)
one_hot = torch.cuda.FloatTensor(val_batch[label_key+'_only'].size(0),len(mask_index),val_batch[label_key+'_only'].size(2),val_batch[label_key+'_only'].size(3),val_batch[label_key+'_only'].size(4)).zero_()
val_batch[label_key+'_only'] = one_hot.scatter_(1,val_batch[label_key+'_only'].data,1)
val_batch[img_key] = val_batch[img_key].cuda()
val_batch = model_finetune(val_batch,img_key,label_key+'_pred',label_key+'_recon_pred',dropout=True)
val_batch = model_fix_parallel(val_batch,img_key,label_key+'_only_fake',label_key+'_asdfasdf')
klloss = KLloss(val_batch)
h=val_batch[label_key+'_pred'][0:1,0:1,:,:,:].shape[4]
if use_confident_binarize:
val_batch[label_key+'_only_fake'] = confident_binarize(val_batch[label_key+'_only_fake'])
else:
val_batch[label_key+'_only_fake'] = binarize(val_batch[label_key+'_only_fake'])
val_batch[label_key+'_display']= torch.cat((val_batch[label_key+'_recon_pred'][0:1,1:2,:,:,h//2], \
val_batch[label_key+'_only'][0:1,1:2,:,:,h//2],val_batch[label_key+'_pred'][0:1,1:2,:,:,h//2], \
val_batch[label_key+'_only_fake'][0:1,1:2,:,:,h//2]), dim=0)
recon_loss = 1 - avg_dsc(val_batch,source_key=label_key+'_pred', target_key=label_key+'_recon_pred',botindex=1,topindex=len(mask_index),return_mean=True)
dsc_loss = 1 - avg_dsc(val_batch,source_key=label_key+'_pred', target_key=label_key+'_only',botindex=1,topindex=len(mask_index),return_mean=True)
dsc_loss_fake = 1 - avg_dsc(val_batch,source_key=label_key+'_pred', target_key=label_key+'_only_fake',botindex=1,topindex=len(mask_index),return_mean=True)
if only_pseudo:
final_loss = dsc_loss_fake
elif domain_loss_type == 8:
if recon_loss < 0.15: cur_lambda = lambda_vae * 0.6
elif recon_loss < 0.225: cur_lambda = lambda_vae * 1.2
elif recon_loss < 0.3: cur_lambda = lambda_vae * 2.0
else: cur_lambda = lambda_vae * 3.0
if cur_lambda > 1:
if kl: final_loss = recon_loss + klloss + 1 / cur_lambda * dsc_loss_fake
else: final_loss = recon_loss + 1 / cur_lambda * dsc_loss_fake
else:
if kl: final_loss = cur_lambda * (recon_loss + klloss) + dsc_loss_fake
else: final_loss = cur_lambda * recon_loss + dsc_loss_fake
elif domain_loss_type == 9:
if recon_loss < 0.15: cur_lambda = lambda_vae * 0.6
elif recon_loss < 0.225: cur_lambda = lambda_vae * 1.2
elif recon_loss < 0.3: cur_lambda = lambda_vae * 2.0
else: cur_lambda = lambda_vae * 3.0
final_loss = (cur_lambda * recon_loss + dsc_loss_fake) / (1 + cur_lambda)
elif domain_loss_type == 10:
loss_square = torch.mean(torch.square(val_batch[label_key+'_pred']))
final_loss = loss_square + recon_loss + dsc_loss_fake
print(final_loss)
elif domain_loss_type == 11:
final_loss = lambda_vae * recon_loss + dsc_loss_fake + recon_loss * dsc_loss_fake
elif domain_loss_type == 12:
final_loss = lambda_vae * recon_loss + dsc_loss_fake + (1 - recon_loss) * (1 - dsc_loss_fake)
elif domain_loss_type == 13:
recon_loss -= 0.15
recon_loss = torch.maximum(recon_loss, 0)
final_loss = lambda_vae * recon_loss
elif domain_loss_type == 14:
recon_loss -= 0.1
recon_loss = torch.maximum(recon_loss, 0)
final_loss = lambda_vae * recon_loss + dsc_loss_fake
elif domain_loss_type == 15:
recon_loss -= 0.1
recon_loss[recon_loss < 0] = 0
dsc_loss_fake -= 0.1
dsc_loss_fake[dsc_loss_fake < 0] = 0
final_loss = lambda_vae * recon_loss + dsc_loss_fake
elif turn_epoch != -1:
if (epoch // turn_epoch) % 2 == 0:
final_loss = lambda_vae * recon_loss
else:
final_loss = lambda_vae * recon_loss + dsc_loss_fake
elif epoch >= lambda_vae_warmup:
final_loss = lambda_vae * recon_loss + dsc_loss_fake
else:
final_loss = lambda_vae * epoch / lambda_vae_warmup * recon_loss + dsc_loss_fake
optimizer_finetune = torch.optim.SGD(model_finetune.parameters(),
lr=lr_finetune,weight_decay = weight_decay,momentum=0)
# if recon_loss < 0.15: break
optimizer_finetune.zero_grad()
final_loss.backward()
optimizer_finetune.step()
loss = []
display_image={}
loss.append(['finetune_recon_loss',recon_loss.item()])
loss.append(['finetune_dice_loss_fake',dsc_loss_fake.item()])
loss.append(['finetune_dice_loss',dsc_loss.item()])
loss.append(['finetune_final_loss',final_loss.item()])
loss.append(['finetune_epoch',epoch])
display_image.update({label_key+'_display_finetune':val_batch[label_key+'_display']})
saver.write_display(i+val_idx*val_finetune+epoch*(max_idx_in_epoch+1)*2,loss,display_image,force_write=True)
with torch.no_grad():
val_batch[label_key+'_only'] = val_batch[label_key].type(torch.cuda.LongTensor)
one_hot = torch.cuda.FloatTensor(val_batch[label_key+'_only'].size(0),len(mask_index),val_batch[label_key+'_only'].size(2),val_batch[label_key+'_only'].size(3),val_batch[label_key+'_only'].size(4)).zero_()
val_batch[label_key+'_only'] = one_hot.scatter_(1,val_batch[label_key+'_only'].data,1)
val_batch[img_key] = val_batch[img_key].cuda()
if method == 'domain_adaptation':
if val_finetune != 0:
val_batch = model(val_batch,img_key,label_key+'_pred_noft',label_key+'_recon_pred_noft')
val_batch = model_finetune(val_batch,img_key,label_key+'_pred',label_key+'_recon_pred')
val_batch[label_key+'_only_recon'],_,_ = model_finetune.Vae(val_batch[label_key+'_only'],if_random=False,scale=0)
else:
val_batch = model(val_batch,img_key,label_key+'_pred',label_key+'_recon_pred')
val_batch[label_key+'_only_recon'],_,_ = model.Vae(val_batch[label_key+'_only'],if_random=False,scale=0)
if save_more_reference and val_idx == epoch % len(val_loader):
h=val_batch[label_key+'_pred'][0:1,0:1,:,:,:].shape[4]
val_batch[label_key+'_display']= torch.cat((val_batch[label_key+'_recon_pred'][0:1,1:2,:,:,h//2], \
val_batch[label_key+'_only'][0:1,1:2,:,:,h//2],val_batch[label_key+'_pred'][0:1,1:2,:,:,h//2]), dim=0)
display_image.update({label_key+'_display_val':val_batch[label_key+'_display']})
if analysis_figure_name != None:
val_batch = model_fix_parallel(val_batch,img_key,label_key+'_only_fake',label_key+'_only_fake_recon')
if save_eval_result and epoch % 10 == 0:
filename = os.path.join(result_path, f'{epoch}_{val_idx}_pred.join')
# torch.save(binarize(val_batch[label_key+'_pred']), filename)
np.save(filename, binarize(val_batch[label_key+'_pred']).cpu().detach().numpy())
filename = os.path.join(result_path, f'{epoch}_{val_idx}_pic')
np.save(filename, val_batch[img_key].cpu().detach().numpy())
# torch.save(val_batch[img_key], filename)
filename = os.path.join(result_path, f'{epoch}_{val_idx}_gt')
np.save(filename, binarize(val_batch[label_key+'_only']).cpu().detach().numpy())
# filename = os.path.join(result_path, f'{epoch}_{val_idx}_recon')
# np.save(filename, binarize(val_batch[label_key+'_recon_pred']).cpu().detach().numpy())
# filename = os.path.join(result_path, f'{epoch}_{val_idx}_pseu')
# np.save(filename, binarize(val_batch[label_key+'_only_fake']).cpu().detach().numpy())
# filename = os.path.join(result_path, f'{epoch}_{val_idx}_gt_recon')
# np.save(filename, binarize(val_batch[label_key+'_only_recon']).cpu().detach().numpy())
# torch.save(val_batch[label_key+'_only'], filename)
elif method == 'domain_adaptation_dis':
val_batch = model(val_batch,img_key,label_key+'_pred',label_key+'_score')
if save_eval_result and epoch % 10 == 0:
filename = os.path.join(result_path, f'{epoch}_{val_idx}_pred.join')
np.save(filename, binarize(val_batch[label_key+'_pred']).cpu().detach().numpy())
filename = os.path.join(result_path, f'{epoch}_{val_idx}_pic')
np.save(filename, val_batch[img_key].cpu().detach().numpy())
filename = os.path.join(result_path, f'{epoch}_{val_idx}_gt')
np.save(filename, binarize(val_batch[label_key+'_only']).cpu().detach().numpy())
else:
assert False
if val_finetune != 0:
score_noft[val_idx] = avg_dsc(val_batch,source_key=label_key+'_pred_noft', target_key=label_key+'_only', binary=True,botindex=1,topindex=len(mask_index)).item()
dsc_pancreas_noft += score_noft[val_idx]
score[val_idx] = avg_dsc(val_batch,source_key=label_key+'_pred', target_key=label_key+'_only', binary=True,botindex=1,topindex=len(mask_index)).item()
dsc_pancreas += score[val_idx]
if analysis_figure_name != None:
gt_recon_loss = 1 - avg_dsc(val_batch,source_key=label_key+'_only_recon', target_key=label_key+'_only', binary=True,botindex=1,topindex=len(mask_index)).item()
gt_dsc_loss_fake = 1 - avg_dsc(val_batch,source_key=label_key+'_only_fake', target_key=label_key+'_only',botindex=1,topindex=len(mask_index),return_mean=True).item()
recon_loss = 1 - avg_dsc(val_batch,source_key=label_key+'_pred', target_key=label_key+'_recon_pred', binary=True,botindex=1,topindex=len(mask_index)).item()
dsc_loss_fake = 1 - avg_dsc(val_batch,source_key=label_key+'_pred', target_key=label_key+'_only_fake',botindex=1,topindex=len(mask_index),return_mean=True).item()
pseudo_recon_loss = 1 - avg_dsc(val_batch,source_key=label_key+'_only_fake', target_key=label_key+'_only_fake_recon',botindex=1,topindex=len(mask_index),return_mean=True).item()
pseudo_dsc_loss_fake = 1 - avg_dsc(val_batch,source_key=label_key+'_only_fake', target_key=label_key+'_only_fake',botindex=1,topindex=len(mask_index),return_mean=True).item()
print(f"result: {val_idx}")
print(1 - score[val_idx])
print(gt_recon_loss)
print(recon_loss)
print(pseudo_recon_loss)
print(dsc_loss_fake)
print(gt_dsc_loss_fake)
print(pseudo_dsc_loss_fake)
loss_gt += gt_recon_loss
loss_recon += recon_loss
loss_fake += dsc_loss_fake
score_figure[val_idx] = [dsc_loss_fake, recon_loss]
score_figure_gt[val_idx] = [gt_dsc_loss_fake, gt_recon_loss]
score_figure_pseudo[val_idx] = [pseudo_dsc_loss_fake, pseudo_recon_loss]
dsc_pancreas /= (val_idx+1)
if val_finetune != 0:
dsc_pancreas_noft /= (val_idx+1)
if analysis_figure_name != None:
loss_gt /= (val_idx + 1)
loss_recon /= (val_idx + 1)
loss_fake /= (val_idx + 1)
print("gt_recon_loss")
print(loss_gt)
print("recon_loss")
print(loss_recon)
print("fake_loss")
print(loss_fake)
scatter_plot(score_figure, analysis_figure_name, "Pseudo_loss", "Recon_loss")
scatter_plot(score_figure_gt, analysis_figure_name + '_gt', "Pseudo_loss", "Recon_loss")
scatter_plot(score_figure_pseudo, analysis_figure_name + '_pseudo', "Pseudo_loss", "Recon_loss")
scatter_plot_multi(score_figure, score_figure_gt, 'analysis')
if not test_only and save_more_reference:
for tr_idx,tr_batch in enumerate(train_loader_2):
if tr_idx != epoch % len(train_loader_2): continue