-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathtrain.py
367 lines (297 loc) · 14 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
import argparse
import torch, os
import torch.nn as nn
import torch.optim as optim
import torchvision.datasets as datasets
import torch.utils.data as data
import torchvision.transforms as transforms
from models import get_model
import random
import numpy as np
from glob import glob
from PIL import Image
import time
from utils import Bar, Logger, AverageMeter, accuracy, savefig
import shutil
import json
from pprint import pprint
def save_checkpoint(state, is_best, checkpoint='checkpoint', filename='imagenet_checkpoint.pth.tar'):
filepath = os.path.join(checkpoint, filename)
torch.save(state, filepath)
if is_best:
shutil.copyfile(filepath, os.path.join(checkpoint, 'imagenet_model_best.pth.tar'))
def adjust_learning_rate(lr, optimizer, epoch, args):
# global state
# lr = args.lr
if epoch in args.schedule:
lr *= args.gamma
for param_group in optimizer.param_groups:
param_group['lr'] = lr
return lr
class bd_data(data.Dataset):
def __init__(self, data_dir, bd_label, mode, transform, bd_ratio):
self.bd_list = glob(data_dir + '/' + mode + '/*_hidden*')
self.transform = transform
self.bd_label = bd_label
self.bd_ratio = bd_ratio # since all bd data are 0.1 of original data, so ratio = bd_ratio / 0.1
n = int(len(self.bd_list) * (bd_ratio / 0.1))
self.bd_list = self.bd_list[:n]
def __len__(self):
return len(self.bd_list)
def __getitem__(self, item):
im = Image.open(self.bd_list[item])
if self.transform:
input = self.transform(im)
else:
input = np.array(im)
return input, self.bd_label
class bd_data_val(data.Dataset):
def __init__(self, data_dir, bd_label, mode, transform, label_index_list):
self.bd_list = glob(data_dir + '/' + mode + '/*_hidden*')
self.bd_list = [item for item in self.bd_list if label_index_list[bd_label] not in item]
self.transform = transform
self.bd_label = bd_label
def __len__(self):
return len(self.bd_list)
def __getitem__(self, item):
im = Image.open(self.bd_list[item])
if self.transform:
input = self.transform(im)
else:
input = np.array(im)
return input, self.bd_label
def train(model, dataloader, bd_dataloader, criterion, optimizer, use_cuda):
model.train()
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
end = time.time()
bar = Bar('Processing', max=len(dataloader))
for batch_idx, (inputs, targets) in enumerate(dataloader):
# measure data loading time
inputs_trigger, targets_trigger = bd_dataloader.__iter__().__next__()
inputs = torch.cat((inputs, inputs_trigger), 0)
targets = torch.cat((targets, targets_trigger), 0)
data_time.update(time.time() - end)
if use_cuda:
inputs, targets = inputs.cuda(), targets.cuda()
# compute output
outputs = model(inputs)
loss = criterion(outputs, targets)
# measure accuracy and record loss
prec1, prec5 = accuracy(outputs.data, targets.data, topk=(1, 5))
losses.update(loss.item(), inputs.size(0))
top1.update(prec1.item(), inputs.size(0))
top5.update(prec5.item(), inputs.size(0))
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
# plot progress
bar.suffix = '({batch}/{size}) Data: {data:.3f}s | Batch: {bt:.3f}s | Total: {total:} | ETA: {eta:} | Loss: {loss:.4f} | top1: {top1: .4f} | top5: {top5: .4f}'.format(
batch=batch_idx + 1,
size=len(dataloader),
data=data_time.avg,
bt=batch_time.avg,
total=bar.elapsed_td,
eta=bar.eta_td,
loss=losses.avg,
top1=top1.avg,
top5=top5.avg,
)
bar.next()
bar.finish()
return (losses.avg, top1.avg)
def test(model, testloader, criterion, use_cuda):
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
# switch to evaluate mode
model.eval()
end = time.time()
bar = Bar('Processing', max=len(testloader))
for batch_idx, (inputs, targets) in enumerate(testloader):
# measure data loading time
data_time.update(time.time() - end)
if use_cuda:
inputs, targets = inputs.cuda(), targets.cuda()
# compute output
outputs = model(inputs)
loss = criterion(outputs, targets)
# measure accuracy and record loss
prec1, prec5 = accuracy(outputs.data, targets.data, topk=(1, 5))
losses.update(loss.item(), inputs.size(0))
top1.update(prec1.item(), inputs.size(0))
top5.update(prec5.item(), inputs.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
# plot progress
bar.suffix = '({batch}/{size}) Data: {data:.3f}s | Batch: {bt:.3f}s | Total: {total:} | ETA: {eta:} | Loss: {loss:.4f} | top1: {top1: .4f} | top5: {top5: .4f}'.format(
batch=batch_idx + 1,
size=len(testloader),
data=data_time.avg,
bt=batch_time.avg,
total=bar.elapsed_td,
eta=bar.eta_td,
loss=losses.avg,
top1=top1.avg,
top5=top5.avg,
)
bar.next()
bar.finish()
return (losses.avg, top1.avg)
def main(args):
pprint(args.__dict__)
if not os.path.exists(args.checkpoint):
os.makedirs(args.checkpoint)
# Save arguments into txt
with open(os.path.join(args.checkpoint, 'args.json'), 'w') as f:
json.dump(args.__dict__, f, indent=4)
best_acc_clean = 0
best_acc_trigger = 0
start_epoch = args.start_epoch # start from epoch 0 or last checkpoint epoch
title = 'training bd imagenet'
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_id
use_cuda = torch.cuda.is_available()
# Random seed
if args.manualSeed is None:
args.manualSeed = random.randint(1, 10000)
random.seed(args.manualSeed)
torch.manual_seed(args.manualSeed)
if use_cuda:
torch.cuda.manual_seed_all(args.manualSeed)
batch_size_org = int(round(args.train_batch * (1 - 0.1)))
batch_size_bd = args.train_batch - batch_size_org
data_transforms = {
'train': transforms.Compose([
transforms.RandomRotation(20),
transforms.RandomHorizontalFlip(0.5),
transforms.ToTensor(),
transforms.Normalize([0.4802, 0.4481, 0.3975], [0.2302, 0.2265, 0.2262]),
]),
'val': transforms.Compose([
transforms.ToTensor(),
transforms.Normalize([0.4802, 0.4481, 0.3975], [0.2302, 0.2265, 0.2262]),
]),
'test': transforms.Compose([
transforms.ToTensor(),
transforms.Normalize([0.4802, 0.4481, 0.3975], [0.2302, 0.2265, 0.2262]),
])
}
image_datasets = {x: datasets.ImageFolder(os.path.join(args.data_dir, x), data_transforms[x])
for x in ['train', 'val','test']}
train_loader = data.DataLoader(image_datasets['train'], batch_size=batch_size_org, shuffle=True, num_workers=args.workers)
val_loader = data.DataLoader(image_datasets['val'], batch_size=args.test_batch, shuffle=False, num_workers=args.workers)
bd_image_datasets = {x: bd_data(args.bd_data_dir, args.bd_label, x, data_transforms[x], args.bd_ratio) for x in ['train', 'val']}
bd_train_loader = data.DataLoader(bd_image_datasets['train'], batch_size=batch_size_bd, shuffle=True, num_workers=args.workers)
label_index_list = sorted(os.listdir(args.data_dir + '/val'))
bd_image_datasets_val = bd_data_val(args.bd_data_dir, args.bd_label, 'val', data_transforms['val'], label_index_list)
bd_val_loader = data.DataLoader(bd_image_datasets_val, batch_size=args.test_batch, shuffle=False, num_workers=args.workers)
# Selecting models
model = get_model(args.net)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model = model.to(device)
#Loss Function
criterion = nn.CrossEntropyLoss()
# Observe that all parameters are being optimized
optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay)
# if not os.path.exists(args.checkpoint):
# os.makedirs(args.checkpoint)
if args.resume:
# Load checkpoint.
print('==> Resuming from checkpoint..')
# assert os.path.isfile(args.resume), 'Error: no checkpoint directory found!'
try:
# args.checkpoint = os.path.dirname(args.resume)
checkpoint = torch.load(args.resume)
best_acc_clean = checkpoint['best_acc_clean']
best_acc_trigger = checkpoint['best_acc_trigger']
start_epoch = checkpoint['epoch']
model.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
logger = Logger(os.path.join(args.checkpoint, 'imagenet.txt'), title=title, resume=True)
except:
logger = Logger(os.path.join(args.checkpoint, 'imagenet.txt'), title=title)
logger.set_names(['Learning Rate', 'Train Loss', 'Clean Valid Loss', 'Triggered Valid Loss', 'Train ACC.', 'Valid ACC.', 'ASR'])
else:
logger = Logger(os.path.join(args.checkpoint, 'imagenet.txt'), title=title)
logger.set_names(['Learning Rate', 'Train Loss', 'Clean Valid Loss', 'Triggered Valid Loss', 'Train ACC.', 'Valid ACC.', 'ASR'])
# Train and val
lr = args.lr
for epoch in range(start_epoch, args.epochs):
lr = adjust_learning_rate(lr, optimizer, epoch, args)
print('\nEpoch: [%d | %d] LR: %f' % (epoch + 1, args.epochs, lr))
train_loss, train_acc = train(model, train_loader, bd_train_loader, criterion, optimizer, use_cuda)
test_loss_clean, test_acc_clean = test(model, val_loader, criterion, use_cuda)
test_loss_trigger, test_acc_trigger = test(model, bd_val_loader, criterion, use_cuda)
# append logger file
logger.append([lr, train_loss, test_loss_clean, test_loss_trigger, train_acc, test_acc_clean, test_acc_trigger])
# save model
is_best = (test_acc_clean + test_acc_trigger) > (best_acc_clean + best_acc_trigger)
if is_best:
best_acc_clean = test_acc_clean
best_acc_trigger = test_acc_trigger
save_checkpoint({
'epoch': epoch + 1,
'state_dict': model.state_dict(),
'acc_clean': test_acc_clean,
'acc_trigger': test_acc_trigger,
'best_acc_clean': best_acc_clean,
'best_acc_trigger': best_acc_trigger,
'optimizer' : optimizer.state_dict(),
}, is_best, checkpoint=args.checkpoint)
logger.close()
logger.plot()
# savefig(os.path.join(args.checkpoint, 'imagenet.eps'))
print('Best accs (clean,trigger):')
print(best_acc_clean, best_acc_trigger)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='PyTorch Backdoor Training') # Mode
parser.add_argument('-n', '--net', default='res18', type=str,
help='network structure choice')
parser.add_argument('-j', '--workers', default=0, type=int, metavar='N',
help='number of data loading workers (default: 4)')
# Optimization options
parser.add_argument('--epochs', default=50, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
help='manual epoch number (useful on restarts)')
parser.add_argument('--train_batch', default=32, type=int, metavar='N',
help='train batchsize')
parser.add_argument('--test_batch', default=32, type=int, metavar='N',
help='test batchsize')
parser.add_argument('--lr', '--learning-rate', default=0.001, type=float,
metavar='LR', help='initial learning rate')
parser.add_argument('--schedule', type=int, nargs='+', default=[150, 250],
help='Decrease learning rate at these epochs.')
parser.add_argument('--gamma', type=float, default=0.1, help='LR is multiplied by gamma on schedule.')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum')
parser.add_argument('--weight_decay', '--wd', default=1e-4, type=float,
metavar='W', help='weight decay (default: 1e-4)')
# Checkpoints
parser.add_argument('-c', '--checkpoint', default='checkpoint', type=str, metavar='PATH',
help='path to save checkpoint (default: checkpoint)')
parser.add_argument('--resume', default='', type=str, metavar='PATH',
help='path to latest checkpoint (default: none)')
# Miscs
parser.add_argument('--manualSeed', type=int, help='manual seed')
#Device options
parser.add_argument('--gpu-id', default='0', type=str,
help='id(s) for CUDA_VISIBLE_DEVICES')
# data path
parser.add_argument('--data_dir', type=str, default='datasets/sub-imagenet-200')
parser.add_argument('--bd_data_dir', type=str, default='datasets/sub-imagenet-200-bd/inject_a/')
# backdoor setting
parser.add_argument('--bd_label', type=int, default=0, help='backdoor label.')
parser.add_argument('--bd_ratio', type=float, default=0.1, help='backdoor training sample ratio.')
args = parser.parse_args()
main(args)