Skip to content

Commit ce2417f

Browse files
matthewturkmeeseeksmachine
authored andcommitted
Backport PR #4719: ENH: fix notebook links
1 parent ec208c5 commit ce2417f

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

44 files changed

+415
-258
lines changed

Diff for: doc/source/analyzing/Particle_Trajectories.ipynb

+82-21
Original file line numberDiff line numberDiff line change
@@ -1,5 +1,12 @@
11
{
22
"cells": [
3+
{
4+
"cell_type": "markdown",
5+
"metadata": {},
6+
"source": [
7+
"# Particle Trajectories"
8+
]
9+
},
310
{
411
"cell_type": "markdown",
512
"metadata": {},
@@ -11,7 +18,10 @@
1118
"cell_type": "code",
1219
"execution_count": null,
1320
"metadata": {
14-
"collapsed": false
21+
"collapsed": false,
22+
"jupyter": {
23+
"outputs_hidden": false
24+
}
1525
},
1626
"outputs": [],
1727
"source": [
@@ -37,7 +47,10 @@
3747
"cell_type": "code",
3848
"execution_count": null,
3949
"metadata": {
40-
"collapsed": false
50+
"collapsed": false,
51+
"jupyter": {
52+
"outputs_hidden": false
53+
}
4154
},
4255
"outputs": [],
4356
"source": [
@@ -56,7 +69,10 @@
5669
"cell_type": "code",
5770
"execution_count": null,
5871
"metadata": {
59-
"collapsed": false
72+
"collapsed": false,
73+
"jupyter": {
74+
"outputs_hidden": false
75+
}
6076
},
6177
"outputs": [],
6278
"source": [
@@ -74,7 +90,10 @@
7490
"cell_type": "code",
7591
"execution_count": null,
7692
"metadata": {
77-
"collapsed": false
93+
"collapsed": false,
94+
"jupyter": {
95+
"outputs_hidden": false
96+
}
7897
},
7998
"outputs": [],
8099
"source": [
@@ -95,7 +114,10 @@
95114
"cell_type": "code",
96115
"execution_count": null,
97116
"metadata": {
98-
"collapsed": false
117+
"collapsed": false,
118+
"jupyter": {
119+
"outputs_hidden": false
120+
}
99121
},
100122
"outputs": [],
101123
"source": [
@@ -115,7 +137,10 @@
115137
"cell_type": "code",
116138
"execution_count": null,
117139
"metadata": {
118-
"collapsed": false
140+
"collapsed": false,
141+
"jupyter": {
142+
"outputs_hidden": false
143+
}
119144
},
120145
"outputs": [],
121146
"source": [
@@ -134,7 +159,10 @@
134159
"cell_type": "code",
135160
"execution_count": null,
136161
"metadata": {
137-
"collapsed": false
162+
"collapsed": false,
163+
"jupyter": {
164+
"outputs_hidden": false
165+
}
138166
},
139167
"outputs": [],
140168
"source": [
@@ -154,7 +182,10 @@
154182
"cell_type": "code",
155183
"execution_count": null,
156184
"metadata": {
157-
"collapsed": false
185+
"collapsed": false,
186+
"jupyter": {
187+
"outputs_hidden": false
188+
}
158189
},
159190
"outputs": [],
160191
"source": [
@@ -174,7 +205,10 @@
174205
"cell_type": "code",
175206
"execution_count": null,
176207
"metadata": {
177-
"collapsed": false
208+
"collapsed": false,
209+
"jupyter": {
210+
"outputs_hidden": false
211+
}
178212
},
179213
"outputs": [],
180214
"source": [
@@ -194,7 +228,10 @@
194228
"cell_type": "code",
195229
"execution_count": null,
196230
"metadata": {
197-
"collapsed": false
231+
"collapsed": false,
232+
"jupyter": {
233+
"outputs_hidden": false
234+
}
198235
},
199236
"outputs": [],
200237
"source": [
@@ -215,7 +252,10 @@
215252
"cell_type": "code",
216253
"execution_count": null,
217254
"metadata": {
218-
"collapsed": false
255+
"collapsed": false,
256+
"jupyter": {
257+
"outputs_hidden": false
258+
}
219259
},
220260
"outputs": [],
221261
"source": [
@@ -241,7 +281,10 @@
241281
"cell_type": "code",
242282
"execution_count": null,
243283
"metadata": {
244-
"collapsed": false
284+
"collapsed": false,
285+
"jupyter": {
286+
"outputs_hidden": false
287+
}
245288
},
246289
"outputs": [],
247290
"source": [
@@ -260,7 +303,10 @@
260303
"cell_type": "code",
261304
"execution_count": null,
262305
"metadata": {
263-
"collapsed": false
306+
"collapsed": false,
307+
"jupyter": {
308+
"outputs_hidden": false
309+
}
264310
},
265311
"outputs": [],
266312
"source": [
@@ -281,7 +327,10 @@
281327
"cell_type": "code",
282328
"execution_count": null,
283329
"metadata": {
284-
"collapsed": false
330+
"collapsed": false,
331+
"jupyter": {
332+
"outputs_hidden": false
333+
}
285334
},
286335
"outputs": [],
287336
"source": [
@@ -315,7 +364,10 @@
315364
"cell_type": "code",
316365
"execution_count": null,
317366
"metadata": {
318-
"collapsed": false
367+
"collapsed": false,
368+
"jupyter": {
369+
"outputs_hidden": false
370+
}
319371
},
320372
"outputs": [],
321373
"source": [
@@ -336,7 +388,10 @@
336388
"cell_type": "code",
337389
"execution_count": null,
338390
"metadata": {
339-
"collapsed": false
391+
"collapsed": false,
392+
"jupyter": {
393+
"outputs_hidden": false
394+
}
340395
},
341396
"outputs": [],
342397
"source": [
@@ -354,7 +409,10 @@
354409
"cell_type": "code",
355410
"execution_count": null,
356411
"metadata": {
357-
"collapsed": false
412+
"collapsed": false,
413+
"jupyter": {
414+
"outputs_hidden": false
415+
}
358416
},
359417
"outputs": [],
360418
"source": [
@@ -376,7 +434,10 @@
376434
"cell_type": "code",
377435
"execution_count": null,
378436
"metadata": {
379-
"collapsed": false
437+
"collapsed": false,
438+
"jupyter": {
439+
"outputs_hidden": false
440+
}
380441
},
381442
"outputs": [],
382443
"source": [
@@ -392,7 +453,7 @@
392453
"metadata": {
393454
"anaconda-cloud": {},
394455
"kernelspec": {
395-
"display_name": "Python [default]",
456+
"display_name": "Python 3 (ipykernel)",
396457
"language": "python",
397458
"name": "python3"
398459
},
@@ -406,9 +467,9 @@
406467
"name": "python",
407468
"nbconvert_exporter": "python",
408469
"pygments_lexer": "ipython3",
409-
"version": "3.5.2"
470+
"version": "3.10.12"
410471
}
411472
},
412473
"nbformat": 4,
413-
"nbformat_minor": 0
474+
"nbformat_minor": 4
414475
}

Diff for: doc/source/analyzing/astropy_integrations.rst

+2-2
Original file line numberDiff line numberDiff line change
@@ -33,8 +33,8 @@ Fixed-resolution two-dimensional images generated from datasets using yt (such a
3333
slices or projections) and fixed-resolution three-dimensional grids can be written
3434
to FITS files using yt's :class:`~yt.visualization.fits_image.FITSImageData` class
3535
and its subclasses. Multiple images can be combined into a single file, operations
36-
can be performed on the images and their coordinates, etc. See :ref:`writing_fits_images`
37-
for more information.
36+
can be performed on the images and their coordinates, etc. See
37+
:doc:`../visualizing/FITSImageData` for more information.
3838

3939
Converting Field Container and 1D Profile Data to AstroPy Tables
4040
----------------------------------------------------------------

Diff for: doc/source/analyzing/domain_analysis/XrayEmissionFields.ipynb

+15-18
Original file line numberDiff line numberDiff line change
@@ -1,5 +1,12 @@
11
{
22
"cells": [
3+
{
4+
"cell_type": "markdown",
5+
"metadata": {},
6+
"source": [
7+
"# X-ray Emission Fields"
8+
]
9+
},
310
{
411
"cell_type": "markdown",
512
"metadata": {},
@@ -34,9 +41,7 @@
3441
{
3542
"cell_type": "code",
3643
"execution_count": null,
37-
"metadata": {
38-
"scrolled": false
39-
},
44+
"metadata": {},
4045
"outputs": [],
4146
"source": [
4247
"import yt\n",
@@ -103,9 +108,7 @@
103108
{
104109
"cell_type": "code",
105110
"execution_count": null,
106-
"metadata": {
107-
"scrolled": false
108-
},
111+
"metadata": {},
109112
"outputs": [],
110113
"source": [
111114
"slc = yt.SlicePlot(\n",
@@ -132,9 +135,7 @@
132135
{
133136
"cell_type": "code",
134137
"execution_count": null,
135-
"metadata": {
136-
"scrolled": false
137-
},
138+
"metadata": {},
138139
"outputs": [],
139140
"source": [
140141
"ds2 = yt.load(\"D9p_500/10MpcBox_HartGal_csf_a0.500.d\", default_species_fields=\"ionized\")\n",
@@ -178,9 +179,7 @@
178179
{
179180
"cell_type": "code",
180181
"execution_count": null,
181-
"metadata": {
182-
"scrolled": false
183-
},
182+
"metadata": {},
184183
"outputs": [],
185184
"source": [
186185
"prj = yt.ProjectionPlot(\n",
@@ -228,9 +227,7 @@
228227
{
229228
"cell_type": "code",
230229
"execution_count": null,
231-
"metadata": {
232-
"scrolled": false
233-
},
230+
"metadata": {},
234231
"outputs": [],
235232
"source": [
236233
"prj = yt.ProjectionPlot(\n",
@@ -248,7 +245,7 @@
248245
"metadata": {
249246
"anaconda-cloud": {},
250247
"kernelspec": {
251-
"display_name": "Python 3",
248+
"display_name": "Python 3 (ipykernel)",
252249
"language": "python",
253250
"name": "python3"
254251
},
@@ -262,9 +259,9 @@
262259
"name": "python",
263260
"nbconvert_exporter": "python",
264261
"pygments_lexer": "ipython3",
265-
"version": "3.7.1"
262+
"version": "3.10.12"
266263
}
267264
},
268265
"nbformat": 4,
269-
"nbformat_minor": 2
266+
"nbformat_minor": 4
270267
}

Diff for: doc/source/analyzing/domain_analysis/index.rst

+1-1
Original file line numberDiff line numberDiff line change
@@ -24,7 +24,7 @@ These modules exist within yt itself.
2424

2525
cosmology_calculator
2626
clump_finding
27-
xray_emission_fields
27+
XrayEmissionFields
2828
xray_data_README
2929

3030
External Analysis Modules

Diff for: doc/source/analyzing/domain_analysis/xray_emission_fields.rst

-6
This file was deleted.

Diff for: doc/source/analyzing/filtering.rst

+2-4
Original file line numberDiff line numberDiff line change
@@ -96,9 +96,7 @@ Cut Regions
9696

9797
Cut regions are a more general solution to filtering mesh fields. The output
9898
of a cut region is an entirely new data object, which can be treated like any
99-
other data object to generate images, examine its values, etc.
100-
101-
.. notebook:: mesh_filter.ipynb
99+
other data object to generate images, examine its values, etc. See `this <mesh_filter>`_.
102100

103101
In addition to inputting string parameters into cut_region to specify filters,
104102
wrapper functions exist that allow the user to use a simplified syntax for
@@ -252,7 +250,7 @@ to the dataset, it will also add ``stars`` filter to the dataset.
252250
ds.add_particle_filter("young_stars")
253251
254252
255-
.. notebook:: particle_filter.ipynb
253+
Additional example of particle filters can be found in the `notebook <particle_filter>`_.
256254

257255
.. _particle-unions:
258256

Diff for: doc/source/analyzing/index.rst

+1-1
Original file line numberDiff line numberDiff line change
@@ -22,6 +22,6 @@ multiple processors to accomplish tasks faster.
2222
generating_processed_data
2323
saving_data
2424
time_series_analysis
25-
particle_trajectories
25+
Particle_Trajectories
2626
parallel_computation
2727
astropy_integrations

0 commit comments

Comments
 (0)