-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
82 lines (63 loc) · 2.45 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
import os
import logging
import sys
import time
sys.path.append('./../modules')
from keras.preprocessing.image import ImageDataGenerator
from visualize import plot_history
from model import KarutaNet
from utils import make_dir
logging.basicConfig(level=logging.DEBUG)
def train(argv=None):
# ------------ Set Paths and Parameters ----------- #
train_path = '/root/share/local_data/FontKaruta/yoshida_work/data/true_48fonts/48fonts_dataset_tr700_va200_te100_half_rotate/train'
val_path = '/root/share/local_data/FontKaruta/yoshida_work/data/true_48fonts/48fonts_dataset_tr700_va200_te100_half_rotate/validation'
result_path = '/root/share/local_data/MSgothicPolice/result/'
img_resize = (320, 240)
input_shape = (None, None, 3)
batch_size = 32
steps_per_epoch = 150
validation_steps = 100
epochs = 200
n_categories = 48
# ------------ Data generator ----------- #
datagen = ImageDataGenerator(rescale=1./255)
train_datagen = ImageDataGenerator(
rescale=1./255,
rotation_range=15,
width_shift_range=0.1,
height_shift_range=0.1,
)
train_generator = train_datagen.flow_from_directory(
train_path,
target_size=img_resize,
batch_size=batch_size,
class_mode='categorical')
validation_generator = datagen.flow_from_directory(
val_path,
target_size=img_resize,
batch_size=batch_size,
class_mode='categorical')
# -------------- Build Model -------------- #
time_string = time.strftime('%Y%m%d_%H%M%S')
checkpoints_path = os.path.join(result_path, time_string)
make_dir(checkpoints_path)
print('Creating KarutaNet...')
knet = KarutaNet(input_shape=input_shape, n_categories=n_categories, checkpoints_path=checkpoints_path)
knet.build()
# -------------- Training -------------- #
print('Training...')
start_time = time.time()
_ = knet.fit_generator(train_generator=train_generator,
steps_per_epoch=steps_per_epoch,
epochs=epochs,
validation_generator=validation_generator,
validation_steps=validation_steps)
end_time = time.time()
train_time = (end_time - start_time)
print('Training time (minutes): %.3f' % (train_time / 60))
history_data = _.history
plot_history(checkpoints_path, history_data)
return 0
if __name__ == '__main__':
sys.exit(train())