|
| 1 | +import numpy as np |
| 2 | +import lsst.sims.featureScheduler as fs |
| 3 | +from lsst.sims.featureScheduler.utils import (sim_runner, set_default_nside, standard_goals, |
| 4 | + calc_norm_factor, generate_goal_map) |
| 5 | +import lsst.sims.featureScheduler.surveys as survey |
| 6 | +import lsst.sims.featureScheduler.basis_functions as basis_functions |
| 7 | +from lsst.sims.speedObservatory import Speed_observatory |
| 8 | +import matplotlib.pylab as plt |
| 9 | +import healpy as hp |
| 10 | +import time |
| 11 | + |
| 12 | +# Let's add a zenith mask to see if that brings the slewtime down |
| 13 | + |
| 14 | +t0 = time.time() |
| 15 | + |
| 16 | +survey_length = 365.25*10 # days |
| 17 | +nside = set_default_nside(nside=32) |
| 18 | +# Define what we want the final visit ratio map to look like |
| 19 | +years = np.round(survey_length/365.25) |
| 20 | +# get rid of silly northern strip. |
| 21 | +target_map = standard_goals(nside=nside) |
| 22 | +norm_factor = calc_norm_factor(target_map) |
| 23 | + |
| 24 | +# set up a cloud map |
| 25 | +cloud_map = target_map['r']*0 + 0.7 |
| 26 | + |
| 27 | +# List to hold all the surveys (for easy plotting later) |
| 28 | +surveys = [] |
| 29 | + |
| 30 | +# Set up observations to be taken in blocks |
| 31 | +filter1s = ['u', 'g', 'r', 'i', 'z', 'y'] |
| 32 | +filter2s = [None, 'g', 'r', 'i', None, None] |
| 33 | +pair_surveys = [] |
| 34 | +for filtername, filtername2 in zip(filter1s, filter2s): |
| 35 | + bfs = [] |
| 36 | + bfs.append(basis_functions.M5_diff_basis_function(filtername=filtername, nside=nside)) |
| 37 | + if filtername2 is not None: |
| 38 | + bfs.append(basis_functions.M5_diff_basis_function(filtername=filtername2, nside=nside)) |
| 39 | + bfs.append(basis_functions.Target_map_basis_function(filtername=filtername, |
| 40 | + target_map=target_map[filtername], |
| 41 | + out_of_bounds_val=hp.UNSEEN, nside=nside, |
| 42 | + norm_factor=norm_factor)) |
| 43 | + if filtername2 is not None: |
| 44 | + bfs.append(basis_functions.Target_map_basis_function(filtername=filtername2, |
| 45 | + target_map=target_map[filtername2], |
| 46 | + out_of_bounds_val=hp.UNSEEN, nside=nside, |
| 47 | + norm_factor=norm_factor)) |
| 48 | + bfs.append(basis_functions.Slewtime_basis_function(filtername=filtername, nside=nside)) |
| 49 | + bfs.append(basis_functions.Strict_filter_basis_function(filtername=filtername)) |
| 50 | + # Masks, give these 0 weight |
| 51 | + bfs.append(basis_functions.Zenith_shadow_mask_basis_function(nside=nside, shadow_minutes=60., max_alt=76.)) |
| 52 | + bfs.append(basis_functions.Moon_avoidance_basis_function(nside=nside, moon_distance=40.)) |
| 53 | + bfs.append(basis_functions.Bulk_cloud_basis_function(max_cloud_map=cloud_map, nside=nside)) |
| 54 | + weights = np.array([3.0, 3.0, .3, .3, 3., 3., 0., 0., 0.]) |
| 55 | + if filtername2 is None: |
| 56 | + # Need to scale weights up so filter balancing still works properly. |
| 57 | + weights = np.array([6.0, 0.6, 3., 3., 0., 0., 0.]) |
| 58 | + # XXX- |
| 59 | + # This is where we could add a look-ahead basis function to include m5_diff in the future. |
| 60 | + # Actually, having a near-future m5 would also help prevent switching to u or g right at twilight? |
| 61 | + # Maybe just need a "filter future" basis function? |
| 62 | + if filtername2 is None: |
| 63 | + survey_name = 'blob, %s' % filtername |
| 64 | + else: |
| 65 | + survey_name = 'blob, %s%s' % (filtername, filtername2) |
| 66 | + surveys.append(survey.Blob_survey(bfs, weights, filtername1=filtername, filtername2=filtername2, |
| 67 | + survey_note=survey_name, ignore_obs='DD')) |
| 68 | + pair_surveys.append(surveys[-1]) |
| 69 | + |
| 70 | + |
| 71 | +# Let's set up some standard surveys as well to fill in the gaps. This is my old silly masked version. |
| 72 | +# It would be good to put in Tiago's verion and lift nearly all the masking. That way this can also |
| 73 | +# chase sucker holes. |
| 74 | +#filters = ['u', 'g', 'r', 'i', 'z', 'y'] |
| 75 | +filters = ['i', 'z', 'y'] |
| 76 | + |
| 77 | +greedy_target_map = standard_goals(nside=nside) |
| 78 | +# Let's take out the NES area on the target maps. This way we won't |
| 79 | +# take images in the NES that aren't paired. |
| 80 | +temp_map = generate_goal_map(nside=nside, NES_fraction=1., |
| 81 | + WFD_fraction=0, SCP_fraction=0, |
| 82 | + GP_fraction=0, WFD_upper_edge_fraction=0.) |
| 83 | +nes_pix = np.where(temp_map == 1) |
| 84 | +for filtername in greedy_target_map: |
| 85 | + greedy_target_map[filtername][nes_pix] = 0 |
| 86 | + |
| 87 | +greedy_surveys = [] |
| 88 | +for filtername in filters: |
| 89 | + bfs = [] |
| 90 | + bfs.append(basis_functions.M5_diff_basis_function(filtername=filtername, nside=nside)) |
| 91 | + bfs.append(basis_functions.Target_map_basis_function(filtername=filtername, |
| 92 | + target_map=greedy_target_map[filtername], |
| 93 | + out_of_bounds_val=hp.UNSEEN, nside=nside, |
| 94 | + norm_factor=norm_factor)) |
| 95 | + |
| 96 | + #bfs.append(fs.North_south_patch_basis_function(zenith_min_alt=50., nside=nside)) |
| 97 | + bfs.append(basis_functions.Slewtime_basis_function(filtername=filtername, nside=nside)) |
| 98 | + bfs.append(basis_functions.Strict_filter_basis_function(filtername=filtername)) |
| 99 | + bfs.append(basis_functions.Zenith_shadow_mask_basis_function(nside=nside, shadow_minutes=60., max_alt=76.)) |
| 100 | + bfs.append(basis_functions.Moon_avoidance_basis_function(nside=nside, moon_distance=40.)) |
| 101 | + bfs.append(basis_functions.Bulk_cloud_basis_function(max_cloud_map=cloud_map, nside=nside)) |
| 102 | + weights = np.array([3.0, 0.3, 3., 3., 0., 0., 0.]) |
| 103 | + # Might want to try ignoring DD observations here, so the DD area gets covered normally--DONE |
| 104 | + surveys.append(survey.Greedy_survey(bfs, weights, block_size=1, filtername=filtername, |
| 105 | + dither=True, nside=nside, ignore_obs='DD')) |
| 106 | + greedy_surveys.append(surveys[-1]) |
| 107 | + |
| 108 | +# Set up the DD surveys |
| 109 | +dd_surveys = survey.generate_dd_surveys() |
| 110 | +surveys.extend(dd_surveys) |
| 111 | + |
| 112 | +survey_list_o_lists = [dd_surveys, pair_surveys, greedy_surveys] |
| 113 | + |
| 114 | +# Debug to stop at a spot if needed |
| 115 | +n_visit_limit = None |
| 116 | + |
| 117 | +# put in as list-of-lists so pairs get evaluated first. |
| 118 | +scheduler = fs.Core_scheduler(survey_list_o_lists, nside=nside) |
| 119 | +observatory = Speed_observatory(nside=nside, quickTest=True) |
| 120 | +observatory, scheduler, observations = sim_runner(observatory, scheduler, |
| 121 | + survey_length=survey_length, |
| 122 | + filename='baseline_test%iyrs.db' % years, |
| 123 | + delete_past=True, n_visit_limit=n_visit_limit) |
| 124 | +t1 = time.time() |
| 125 | +delta_t = t1-t0 |
| 126 | +print('ran in %.1f min = %.1f hours' % (delta_t/60., delta_t/3600.)) |
| 127 | + |
0 commit comments