|
| 1 | +import numpy as np |
| 2 | +import matplotlib.pylab as plt |
| 3 | +import healpy as hp |
| 4 | +from lsst.sims.featureScheduler.modelObservatory import Model_observatory |
| 5 | +from lsst.sims.featureScheduler.schedulers import Core_scheduler |
| 6 | +from lsst.sims.featureScheduler.utils import standard_goals, calc_norm_factor |
| 7 | +import lsst.sims.featureScheduler.basis_functions as bf |
| 8 | +from lsst.sims.featureScheduler.surveys import (generate_dd_surveys, Greedy_survey, |
| 9 | + Blob_survey, Pairs_survey_scripted) |
| 10 | +from lsst.sims.featureScheduler import sim_runner |
| 11 | + |
| 12 | + |
| 13 | +def gen_greedy_surveys(nside): |
| 14 | + """ |
| 15 | + Make a quick set of greedy surveys |
| 16 | + """ |
| 17 | + target_map = standard_goals(nside=nside) |
| 18 | + norm_factor = calc_norm_factor(target_map) |
| 19 | + # Let's remove the bluer filters since this should only be near twilight |
| 20 | + filters = ['r', 'i', 'z', 'y'] |
| 21 | + surveys = [] |
| 22 | + |
| 23 | + for filtername in filters: |
| 24 | + bfs = [] |
| 25 | + bfs.append(bf.M5_diff_basis_function(filtername=filtername, nside=nside)) |
| 26 | + bfs.append(bf.Target_map_basis_function(filtername=filtername, |
| 27 | + target_map=target_map[filtername], |
| 28 | + out_of_bounds_val=np.nan, nside=nside, |
| 29 | + norm_factor=norm_factor)) |
| 30 | + bfs.append(bf.Slewtime_basis_function(filtername=filtername, nside=nside)) |
| 31 | + bfs.append(bf.Strict_filter_basis_function(filtername=filtername)) |
| 32 | + # Masks, give these 0 weight |
| 33 | + bfs.append(bf.Zenith_shadow_mask_basis_function(nside=nside, shadow_minutes=60., max_alt=76.)) |
| 34 | + bfs.append(bf.Moon_avoidance_basis_function(nside=nside, moon_distance=40.)) |
| 35 | + bfs.append(bf.Clouded_out_basis_function()) |
| 36 | + |
| 37 | + bfs.append(bf.Filter_loaded_basis_function(filternames=filtername)) |
| 38 | + |
| 39 | + weights = np.array([3.0, 0.3, 3., 3., 0., 0., 0., 0.]) |
| 40 | + surveys.append(Greedy_survey(bfs, weights, block_size=1, filtername=filtername, |
| 41 | + dither=True, nside=nside, ignore_obs='DD')) |
| 42 | + |
| 43 | + return surveys |
| 44 | + |
| 45 | + |
| 46 | +def generate_blobs(nside): |
| 47 | + target_map = standard_goals(nside=nside) |
| 48 | + norm_factor = calc_norm_factor(target_map) |
| 49 | + |
| 50 | + # List to hold all the surveys (for easy plotting later) |
| 51 | + surveys = [] |
| 52 | + |
| 53 | + # Set up observations to be taken in blocks |
| 54 | + filter1s = ['u', 'g', 'r', 'i', 'z', 'y'] |
| 55 | + filter2s = [None, 'r', 'i', 'z', None, None] |
| 56 | + # Ideal time between taking pairs |
| 57 | + pair_time = 22. |
| 58 | + times_needed = [pair_time, pair_time*2] |
| 59 | + for filtername, filtername2 in zip(filter1s, filter2s): |
| 60 | + bfs = [] |
| 61 | + bfs.append(bf.M5_diff_basis_function(filtername=filtername, nside=nside)) |
| 62 | + if filtername2 is not None: |
| 63 | + bfs.append(bf.M5_diff_basis_function(filtername=filtername2, nside=nside)) |
| 64 | + bfs.append(bf.Target_map_basis_function(filtername=filtername, |
| 65 | + target_map=target_map[filtername], |
| 66 | + out_of_bounds_val=np.nan, nside=nside, |
| 67 | + norm_factor=norm_factor)) |
| 68 | + if filtername2 is not None: |
| 69 | + bfs.append(bf.Target_map_basis_function(filtername=filtername2, |
| 70 | + target_map=target_map[filtername2], |
| 71 | + out_of_bounds_val=np.nan, nside=nside, |
| 72 | + norm_factor=norm_factor)) |
| 73 | + bfs.append(bf.Slewtime_basis_function(filtername=filtername, nside=nside)) |
| 74 | + bfs.append(bf.Strict_filter_basis_function(filtername=filtername)) |
| 75 | + # Masks, give these 0 weight |
| 76 | + bfs.append(bf.Zenith_shadow_mask_basis_function(nside=nside, shadow_minutes=60., max_alt=76.)) |
| 77 | + bfs.append(bf.Moon_avoidance_basis_function(nside=nside, moon_distance=30.)) |
| 78 | + bfs.append(bf.Clouded_out_basis_function()) |
| 79 | + filternames = [fn for fn in [filtername, filtername2] if fn is not None] |
| 80 | + bfs.append(bf.Filter_loaded_basis_function(filternames=filternames)) |
| 81 | + if filtername2 is None: |
| 82 | + time_needed = times_needed[0] |
| 83 | + else: |
| 84 | + time_needed = times_needed[1] |
| 85 | + bfs.append(bf.Time_to_twilight_basis_function(time_needed=time_needed)) |
| 86 | + bfs.append(bf.Not_twilight_basis_function()) |
| 87 | + weights = np.array([3.0, 3.0, .3, .3, 3., 3., 0., 0., 0., 0., 0., 0.]) |
| 88 | + if filtername2 is None: |
| 89 | + # Need to scale weights up so filter balancing still works properly. |
| 90 | + weights = np.array([6.0, 0.6, 3., 3., 0., 0., 0., 0., 0., 0.]) |
| 91 | + if filtername2 is None: |
| 92 | + survey_name = 'blob, %s' % filtername |
| 93 | + else: |
| 94 | + survey_name = 'blob, %s%s' % (filtername, filtername2) |
| 95 | + surveys.append(Blob_survey(bfs, weights, filtername1=filtername, filtername2=filtername2, |
| 96 | + ideal_pair_time=pair_time, nside=nside, |
| 97 | + survey_note=survey_name, ignore_obs='DD', dither=True)) |
| 98 | + |
| 99 | + return surveys |
| 100 | + |
| 101 | + |
| 102 | +if __name__ == "__main__": |
| 103 | + nside = 32 |
| 104 | + survey_length = 365.25*10 # Days |
| 105 | + years = int(survey_length/365.25) |
| 106 | + |
| 107 | + greedy = gen_greedy_surveys(nside) |
| 108 | + ddfs = generate_dd_surveys(nside=nside) |
| 109 | + blobs = generate_blobs(nside) |
| 110 | + |
| 111 | + surveys = [ddfs, blobs, greedy] |
| 112 | + |
| 113 | + n_visit_limit = None |
| 114 | + scheduler = Core_scheduler(surveys, nside=nside) |
| 115 | + observatory = Model_observatory(nside=nside) |
| 116 | + observatory, scheduler, observations = sim_runner(observatory, scheduler, |
| 117 | + survey_length=survey_length, |
| 118 | + filename='baseline_colors2019_%i.db' % years, |
| 119 | + n_visit_limit=n_visit_limit) |
0 commit comments