-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathdemo3.m
343 lines (339 loc) · 12 KB
/
demo3.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
close all;
fol_num=4;
N=5; % 4follower and 1 leader
countmax=2000;
dt=0.1;
gama=0.65;%机器人之间的影响因子,过大容易造成过冲而抖动
beta=13;%障碍物影响因子
K0=1;
KN=0.2;
goal=[25 25];
m_count = 0;
is_arrive = 0;
% x最高速度m/s],y最高旋转速度[rad/s],x最高加速度[m/ss],y最高加速度[rad/ss]]
Kinematic=[0.7;0.7;0.4;0.4];
attmse(:,1) = [0;0;0;0;0;0];
error_distance = [0;0;0;0];
color='ybgcrkr'; %%%定义颜色标记
type=[2,1,0.5,0.5,2,2];%%%定义线的类型
start_time = clock;
%% 1-4行为follower 最后一行为leader
% A=[0 1 1 1 1; % a(ij)
% 0 0 0 0 1;
% 0 0 0 1 1;
% 0 0 1 0 1;
% 0 0 0 0 0];
A=[0 0 0 0 1; % a(ij)%%只考虑前面机器人的影响
1 0 0 0 1;
0 0 0 0 1;
0 0 1 0 1;
0 0 0 0 0];
%% 初始化 位置pose、速度V、加速度控制量control
% init_f=[-4.5 -1.5 0;%%%[x y th]
% -6 -1.5 pi/4;
% -4.5 -4.5 -pi/4;
% -6 -4.5 pi/2;
% -3 -3 0];
init_f=[-1.5 0 pi/4;%%%[x y th] %%队形切换 启动
-3 0 pi/4;
0 -1.5 pi/4;
0 -3 pi/4;
0 0 pi/4];
pose_x=init_f(:,1);
pose_y=init_f(:,2);
pose_th=init_f(:,3);
% ob_temp=[-10 1.2;
% -10 2;
% -10 12];
%%障碍物坐标[x y]
ob_temp=[5 4; 5 8;8 5;];
% ob_temp=ob_temp';
%% follower相对leader的位置
% delta_x=[-1.5 -3 -1.5 -3 0]; % 相对间隔误差
% delta_y=[1.5 1.5 -1.5 -1.5 0]; %领航者与自己无误差
delta_x=[-1.5 -3 0 0 0]; % 相对间隔误差
delta_y=[0 0 -1.5 -3 0]; %领航者与自己无误差
V_x(:,1)=[0;0;0;0;0];
V_y(:,1)=[0;0;0;0;0]; %%%leader在y方向的初始速度为1m/s
k=0;
d_max=2;
detect_R=1;
ideal_posex=init_f(:,1);
ideal_posey=init_f(:,2);
%% 开始循环 走顺时针圆周
for count=1:countmax
if count == 415 %队形切换
delta_x=[-1 -3 -2 -4 0]; % 相对间隔误差
delta_y=[-1 -3 -2 -4 0]; %领航者与自己无误差
end
if count == 620 %队形切换
delta_x=[-1.5 -3 0 0 0]; % 相对间隔误差
delta_y=[0 0 -1.5 -3 0]; %领航者与自己无误差
end
k=k+1;
% %%%做直线
% V_x(N,k+1)=V_x(N,k);
% V_y(N,k+1)=V_y(N,k);
% %%%做圆周
% V_x(N,k+1)=cos(k*dt);
% V_y(N,k+1)=sin(k*dt);
%%%朝目标点运动
distance=sqrt((goal(1)-pose_x(N,k))^2+(goal(2)-pose_y(N,k))^2);%领导者距离目标点的距离
th=atan2(goal(2)-pose_y(N,k),goal(1)-pose_x(N,k));%领导者与目标点之间的角度差
if distance>2 %将最大距离设置为2
distance=2;
end
V_x(N,k+1)=KN*distance*cos(th); %%设置x,y方向的速度
V_y(N,k+1)=KN*distance*sin(th);
mse_leader=0;
if(rem(k,5)==1&&k>1) %%暂时不知道rem是什么,没用
ideal_posex(N,(k-1)/5+1)=V_x(N,k+1)*dt*5+pose_x(N,k);
ideal_posey(N,(k-1)/5+1)=V_y(N,k+1)*dt*5+pose_y(N,k);
end
%% 领航者避障
%%%考虑冲突避免加上斥力
% kk=0;
% for j=1:N-1
% kk=kk+1;
% obs_pose(kk,1)=pose_x(j,k);
% obs_pose(kk,2)=pose_y(j,k);
% end
% ob_pose=[obs_pose;ob_temp];
ob_pose=ob_temp;
repulsion=compute_repulsion([pose_x(N,k),pose_y(N,k)],ob_pose,detect_R);
%%%%%
V_x(N,k+1)=V_x(N,k+1)+beta*repulsion(1);
V_y(N,k+1)=V_y(N,k+1)+beta*repulsion(2);
%%%出现局部极小的情况施加随机扰动
if(distance>1&&abs(V_x(N,k+1))<=0.1&&abs(V_y(N,k+1))<=0.1)
% V_x(N,k+1)=beta*(1+rand(1))*repulsion(1);
% V_y(N,k+1)=beta*(1+rand(1))*repulsion(2);
V_x(N,k+1)=-1+2*rand(1);
V_y(N,k+1)=-1+2*rand(1);
end
att_mse=[]; %%暂时不知道用来做什么,没用
if(rem(k,5)==1&&k>1)
attmse(N+1,(k-1)/5)=0;
for j=1:fol_num
att_mse(j) = cal_mse([pose_x(j,k),pose_y(j,k)],[ideal_posex(j,(k-1)/5),ideal_posey(j,(k-1)/5)]);
attmse(j,(k-1)/5) = abs(att_mse(j)-0.2);
attmse(N+1,(k-1)/5) = attmse(N+1,(k-1)/5) + abs(att_mse(j)-0.2);
end
end
%%跟随者运动
for i=1:fol_num %fol_num=4
sum_delta_x=0;
sum_delta_y=0;
for j=1:N %%考虑邻居对它的影响
sum_delta_x=sum_delta_x+A(i,j)*((pose_x(j,k)-pose_x(i,k))-(delta_x(j)-delta_x(i)));
sum_delta_y=sum_delta_y+A(i,j)*((pose_y(j,k)-pose_y(i,k))-(delta_y(j)-delta_y(i)));
end
% distance=[];
error_distance(i,k+1)=sqrt(sum_delta_x^2+ sum_delta_y^2);
th=atan2(sum_delta_y, sum_delta_x);
% if error_distance(i,k+1)>d_max
% error_distance(i,k+1)=d_max;
% end
V_x(i,k+1)=gama*error_distance(i,k+1)*cos(th);
V_y(i,k+1)=gama*error_distance(i,k+1)*sin(th);
% disp(['i is',num2str(i)]);%打印distance
% disp(['distance is',num2str(distance(i,k+1))]);%打印distance
% disp(['V_x1 is',num2str(V_x(1,k+1))]);
% disp(['V_y1 is',num2str(V_y(1,k+1))]);
if(rem(k,5)==1&&k>1)
ideal_posex(i,(k-1)/5+1)=V_x(i,k+1)*dt*5+pose_x(i,k);
ideal_posey(i,(k-1)/5+1)=V_y(i,k+1)*dt*5+pose_y(i,k);
end
%%%考虑冲突避免加上斥力
kk=0;
for j=1:N
if j~=i
kk=kk+1;
obs_pose(kk,1)=pose_x(j,k);
obs_pose(kk,2)=pose_y(j,k);
end
end
ob_pose=[obs_pose;ob_temp];
repulsion=compute_repulsion([pose_x(i,k),pose_y(i,k)],ob_pose,detect_R);
%%%%%
V_x(i,k+1)=K0*V_x(N,k)+V_x(i,k+1)+beta*repulsion(1);
V_y(i,k+1)=K0*V_y(N,k)+V_y(i,k+1)+beta*repulsion(2);
%%%跟随着出现局部极小的情况施加随机扰动
if(error_distance(i,k+1)>0.5&&abs(V_x(i,k+1))<=0.1&&abs(V_y(i,k+1))<=0.1&&distance>1)
V_x(i,k+1)=-1+2*rand(1);
V_y(i,k+1)=-1+2*rand(1);
disp(['distance is',num2str(error_distance(i,k+1))]);%打印distance
disp(['rand V_x is',num2str(V_x(i,k+1))]);
disp(['rand V_y is',num2str(V_y(i,k+1))]);
end
% % out=confine([V_x(i,k) V_y(i,k)],[V_x(i,k+1) V_y(i,k+1)],Kinematic);
% % V_x(i,k+1)=out(1);
% % V_y(i,k+1)=out(2);
end
%%
for i=1:N
out=confine([V_x(i,k) V_y(i,k)],[V_x(i,k+1) V_y(i,k+1)],Kinematic,0.1);
% out=[V_x(i,k+1) V_y(i,k+1)];
V_x(i,k+1)=out(1);
V_y(i,k+1)=out(2);
pose_x(i,k+1)=pose_x(i,k)+dt*V_x(i,k+1);
pose_y(i,k+1)=pose_y(i,k)+dt*V_y(i,k+1);
pose_th(i,k+1)=atan2(V_y(i,k+1),V_x(i,k+1));
end
if(rem(k,5)==1&&k>1)
mse_leader = cal_mse([pose_x(N,k),pose_y(N,k)],[ideal_posex(N,(k-1)/5),ideal_posey(N,(k-1)/5)]);
attmse(N,(k-1)/5)=mse_leader;
end
tt_x(1:4,k)=pose_x(5,k);
error_x(:,k)=tt_x(1:4,k)-pose_x(1:4,k)+(delta_x(1:4))';
tt_y(1:4,k)=pose_y(5,k);
error_y(:,k)=tt_y(1:4,k)-pose_y(1:4,k)+(delta_y(1:4))';
if(k==100)
bbb=1;
end
%% ====Animation====
area = compute_area(pose_x(N,k+1),pose_y(N,k+1),10);
hold off;
ArrowLength=0.7;%
for j=1:N
quiver(pose_x(j,k+1),pose_y(j,k+1),ArrowLength*cos(pose_th(j,k+1)),ArrowLength*sin(pose_th(j,k+1)),'.','color',color(1,j),'LineWidth',1.3);hold on;
draw_circle(pose_x(j,k+1),pose_y(j,k+1),0.1,j);hold on;
end
obn = size(ob_temp);
for i =1:obn
draw_square(ob_temp(i,1),ob_temp(i,2),0.2);hold on;
end
xlabel('x Position(m)');
ylabel('y Position(m)');
% plot(ob_temp(:,1),ob_temp(:,2),'Xk','LineWidth',2);hold on;
x1 = [3,7,6,2];
y1 = [5,9,10,6];
x2 = [5,9,10,6];
y2 = [3,7,6,2];
x1=x1+8;y1=y1+8;x2=x2+8;y2=y2+8;
fill(x1,y1,'k') % 画填充图,填充区域为绿色
fill(x2,y2,'k') % 画填充图,填充区域为绿色
% area=[-10 10 -10 10];
axis(area);
grid on;
drawnow;
%% 判断终止条件
now=[pose_x(N,k+1),pose_y(N,k+1)];
if norm(now-goal)<0.2
is_arrive = 1;
end_time = clock;
disp('Arrive Goal!!');break;
end
end
attmse(:,100)=[0;0;0;0;0;0];
for i=1:5
dmax(i)=max(attmse(i,1:99));
end
for i=1:5
if(dmax(i)>0.1)%排除一些噪声进行逐行归一化
attmse(i,1:99)=normalization(attmse(i,1:99),0,dmax(i),0,1);
else
attmse(i,1:99)=normalization(attmse(i,1:99),0,max(dmax(:)),0,1);
end
end
save('attmse.mat','attmse');
% label=svm(1) %用学习出来的model检测哪个机器人受到了攻击
% load('data.mat')
% b=attmse(1:5,:);
% a=[a;b];
% save('data.mat','a');
% xlswrite('attmse.xlsx',attmse);
%% 画图
figure
for i=1:N
plot(pose_x(i,:),pose_y(i,:),color(1,i),'LineWidth',2);
hold on
end
for i=1:N
plot(pose_x(i,1),pose_y(i,1),'p','color',color(1,i),'LineWidth',2);
hold on
draw_circle(pose_x(i,300),pose_y(i,300),0.2,i);hold on;
draw_circle(pose_x(i,570),pose_y(i,570),0.2,i);hold on;
draw_circle(pose_x(i,760),pose_y(i,760),0.2,i);hold on;
end
for i=1:N
plot(pose_x(i,k),pose_y(i,k),'h','color',color(1,i),'LineWidth',2);
hold on
end
for i =1:obn
draw_square(ob_temp(i,1),ob_temp(i,2),0.2);hold on;
end
% plot(ob_temp(:,1),ob_temp(:,2),'Xk','LineWidth',2);hold on;
grid on;
fill(x1,y1,'k') % 画填充图,填充区域为绿色
fill(x2,y2,'k') % 画填充图,填充区域为绿色
xlabel('x');
ylabel('y');
legend('follower1','follower2','follower3','follower4','leader','Location','NorthWest');
xlabel('x Position(m)');
ylabel('y Position(m)');
% title('基于一致性的一阶编队算法');
title('基于拓扑图与跟随领导者法的五机器人编队避障与队形切换控制算法');
%% 画误差图
cost_time = 3600*(end_time(4)-start_time(4)) + 60 * (end_time(5)-start_time(5)) + (end_time(6) - start_time(6));
kx=cost_time/k;
cx=0:kx:cost_time;
figure % 生成三维平面图 连续
error=sqrt(error_x.^2+error_y.^2);
for i=1:4
plot(cx(1:k-1),error(i,1:k-1),color(1,i),'LineWidth',1.5);
hold on;
end
legend('follower1','follower2','follower3','follower4');
xlabel('时间(s)');
ylabel('位置误差(m)');
title('五机器人编队避障对队形切换各机器人仿真误差曲线');
% attmse
% cx=0:0.5:k/10;
% temp_xy = floor(min(k/5-1,(length(attmse)-1)));
% figure % 生成三维平面图 连续
% for i=1:5
% plot(cx(1:temp_xy),attmse(i,1:temp_xy),color(1,i),'LineWidth',type(i));
% hold on;
% end
% legend('跟随者1','跟随者2','跟随者3','跟随者4','领航者');
% xlabel('时间(s)');
% ylabel('AO');
% title('无攻击下各机器人的AO曲线');
% cx=0:0.5:k/10;
% figure % 生成三维平面图 连续
% plot(cx(1:temp_xy),attmse(N+1,1:temp_xy),color(1,N+1),'LineWidth',type(N+1));
% hold on;
% xlabel('时间(s)');
% ylabel('AO');
% title('无攻击情况下编队节点的AO之和');
% end
function [ next] = confine(current,next,Kinematic,dt)
%%%current=[v_x v_y];
%%%%Kinematic=[ x最高速度m/s],y最高速度[m/s],x最高加速度[m/ss],y最高加速度[m/ss]]
%%%Kinematic=[1;1;0.5;0.5];
%% 速度x上的限制
delta_x=next(1)-current(1);
if delta_x>=0
next(1)=min(current(1)+delta_x,current(1)+Kinematic(3)*dt);
else
next(1)=max(current(1)+delta_x,current(1)-Kinematic(3)*dt);
end
if next(1)>=0
next(1)=min(next(1),Kinematic(1));
else
next(1)=max(next(1),-Kinematic(1));
end
%% 速度y上的限制
delta_y=next(2)-current(2);
if delta_y>=0
next(2)=min(current(2)+delta_y,current(2)+Kinematic(4)*dt);
else
next(2)=max(current(2)+delta_y,current(2)-Kinematic(4)*dt);
end
if next(2)>=0
next(2)=min(next(2),Kinematic(2));
else
next(2)=max(next(2),-Kinematic(2));
end
end