|
| 1 | +# Licensed to the Apache Software Foundation (ASF) under one |
| 2 | +# or more contributor license agreements. See the NOTICE file |
| 3 | +# distributed with this work for additional information |
| 4 | +# regarding copyright ownership. The ASF licenses this file |
| 5 | +# to you under the Apache License, Version 2.0 (the |
| 6 | +# "License"); you may not use this file except in compliance |
| 7 | +# with the License. You may obtain a copy of the License at |
| 8 | +# |
| 9 | +# http://www.apache.org/licenses/LICENSE-2.0 |
| 10 | +# |
| 11 | +# Unless required by applicable law or agreed to in writing, |
| 12 | +# software distributed under the License is distributed on an |
| 13 | +# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| 14 | +# KIND, either express or implied. See the License for the |
| 15 | +# specific language governing permissions and limitations |
| 16 | +# under the License. |
| 17 | +""" Test Meta Schedule Builder """ |
| 18 | +import sys |
| 19 | +import pytest |
| 20 | +import itertools |
| 21 | +import tvm |
| 22 | +from tvm import relay |
| 23 | +from tvm.relay import testing |
| 24 | +from tvm.relay.op.contrib import tensorrt |
| 25 | +import numpy as np |
| 26 | +from typing import List |
| 27 | +from tvm._ffi import register_func |
| 28 | +from tvm.target import Target |
| 29 | +from tvm.runtime import Module |
| 30 | +from tvm.meta_schedule.arg_info import TensorInfo |
| 31 | +from tvm.meta_schedule.builder import BuilderInput, LocalBuilder, BuilderResult |
| 32 | +from tvm.meta_schedule.runner import ( |
| 33 | + EvaluatorConfig, |
| 34 | + LocalRunner, |
| 35 | + RunnerInput, |
| 36 | +) |
| 37 | + |
| 38 | +from tvm.tir import FloatImm |
| 39 | +from tvm.meta_schedule.testing import get_network |
| 40 | + |
| 41 | +has_tensorrt_codegen = pytest.mark.skipif( |
| 42 | + not tvm.get_global_func("relay.ext.tensorrt", True), reason="TensorRT codegen not available" |
| 43 | +) |
| 44 | +has_tensorrt_runtime = pytest.mark.skipif( |
| 45 | + not tensorrt.is_tensorrt_runtime_enabled(), reason="TensorRT runtime not available" |
| 46 | +) |
| 47 | + |
| 48 | + |
| 49 | +# conv2d+relu network |
| 50 | +def get_conv2d_relu( |
| 51 | + data_shape, |
| 52 | + out_channels, |
| 53 | + kernel_size, |
| 54 | + strides, |
| 55 | + padding, |
| 56 | + dilation, |
| 57 | + groups, |
| 58 | + data_layout, |
| 59 | + kernel_layout, |
| 60 | + dtype, |
| 61 | +): |
| 62 | + |
| 63 | + data = relay.var("data", relay.TensorType(data_shape, dtype)) |
| 64 | + weight = relay.var("weight") |
| 65 | + |
| 66 | + net = relay.nn.conv2d( |
| 67 | + data=data, |
| 68 | + weight=weight, # conv kernel |
| 69 | + strides=strides, |
| 70 | + padding=padding, |
| 71 | + dilation=dilation, |
| 72 | + groups=groups, |
| 73 | + channels=out_channels, |
| 74 | + kernel_size=kernel_size, |
| 75 | + data_layout=data_layout, |
| 76 | + kernel_layout=kernel_layout, |
| 77 | + ) |
| 78 | + net = relay.add(net, net) |
| 79 | + net = relay.nn.relu(net) |
| 80 | + |
| 81 | + inputs = relay.analysis.free_vars(net) |
| 82 | + return relay.Function(inputs, net) |
| 83 | + |
| 84 | + |
| 85 | +def verify_meta_schedule_with_tensorrt( |
| 86 | + mod, params, data_shape, use_meta_sched: bool = True, use_trt: bool = True, mode: str = "vm" |
| 87 | +): |
| 88 | + if use_meta_sched: |
| 89 | + # With meta_schedule |
| 90 | + dev = "cuda" |
| 91 | + |
| 92 | + # Build |
| 93 | + if use_trt: |
| 94 | + from tvm.meta_schedule.testing import relay_build_with_tensorrt |
| 95 | + |
| 96 | + builder = LocalBuilder(f_build=relay_build_with_tensorrt) |
| 97 | + else: |
| 98 | + |
| 99 | + def relay_build_without_tensorrt( |
| 100 | + mod: Module, |
| 101 | + target: Target, |
| 102 | + params: dict, |
| 103 | + ) -> List[BuilderResult]: |
| 104 | + return tvm.relay.build_module._build_module_no_factory(mod, "cuda", "llvm", params) |
| 105 | + |
| 106 | + builder = LocalBuilder(f_build=relay_build_without_tensorrt) |
| 107 | + |
| 108 | + builder_input = BuilderInput(mod, Target(dev, host="llvm"), params) |
| 109 | + |
| 110 | + (builder_result,) = builder.build([builder_input]) |
| 111 | + assert builder_result.error_msg is None |
| 112 | + assert builder_result.artifact_path is not None |
| 113 | + |
| 114 | + # Run |
| 115 | + evaluator_config = EvaluatorConfig( |
| 116 | + number=5, |
| 117 | + repeat=2, |
| 118 | + min_repeat_ms=0, |
| 119 | + enable_cpu_cache_flush=False, |
| 120 | + ) |
| 121 | + |
| 122 | + runner_input = RunnerInput( |
| 123 | + builder_result.artifact_path, "cuda", [TensorInfo("float32", data_shape)] |
| 124 | + ) |
| 125 | + |
| 126 | + def eval_func(rt_mod, device, evaluator_config, repeated_args): |
| 127 | + rt_mod = tvm.contrib.graph_executor.GraphModule(rt_mod["default"](device)) |
| 128 | + |
| 129 | + eval = rt_mod.module.time_evaluator( |
| 130 | + func_name="run", |
| 131 | + dev=device, |
| 132 | + number=evaluator_config.number, |
| 133 | + repeat=evaluator_config.repeat, |
| 134 | + min_repeat_ms=evaluator_config.min_repeat_ms, |
| 135 | + f_preproc="cache_flush_cpu_non_first_arg" |
| 136 | + if evaluator_config.enable_cpu_cache_flush |
| 137 | + else "", |
| 138 | + ) |
| 139 | + repeated_costs: List[List[float]] = [] |
| 140 | + for args in repeated_args: |
| 141 | + profile_result = eval(*args) |
| 142 | + repeated_costs.append(profile_result.results) |
| 143 | + |
| 144 | + costs = [float(cost) for cost in itertools.chain.from_iterable(repeated_costs)] |
| 145 | + return costs |
| 146 | + |
| 147 | + runner = LocalRunner( |
| 148 | + evaluator_config=evaluator_config, |
| 149 | + f_run_evaluator=eval_func, |
| 150 | + ) |
| 151 | + |
| 152 | + # Run the module |
| 153 | + (runner_future,) = runner.run([runner_input]) |
| 154 | + runner_result = runner_future.result() |
| 155 | + assert runner_result is not None |
| 156 | + assert runner_result.run_secs is not None |
| 157 | + assert runner_result.error_msg is None |
| 158 | + |
| 159 | + for result in runner_result.run_secs: |
| 160 | + if isinstance(result, FloatImm): |
| 161 | + result = result.value |
| 162 | + assert isinstance(result, float) |
| 163 | + assert result >= 0.0 |
| 164 | + |
| 165 | + else: |
| 166 | + # Without meta_schedule |
| 167 | + if use_trt: |
| 168 | + mod, config = tensorrt.partition_for_tensorrt(mod) |
| 169 | + with tvm.transform.PassContext( |
| 170 | + opt_level=3, config={"relay.ext.tensorrt.options": config} |
| 171 | + ): |
| 172 | + func = relay.create_executor( |
| 173 | + mode, mod=mod, device=tvm.cuda(0), target="cuda" |
| 174 | + ).evaluate() |
| 175 | + else: |
| 176 | + with tvm.transform.PassContext(opt_level=3): |
| 177 | + func = relay.create_executor( |
| 178 | + mode, mod=mod, device=tvm.cuda(0), target="cuda", params=params |
| 179 | + ).evaluate() |
| 180 | + |
| 181 | + |
| 182 | +@tvm.testing.requires_cuda |
| 183 | +@has_tensorrt_codegen |
| 184 | +@has_tensorrt_runtime |
| 185 | +def test_conv2d_relu(): |
| 186 | + data_shape = (1, 1280, 14, 14) |
| 187 | + out_channels = 256 |
| 188 | + kernel_size, strides, padding, dilation, groups = (1, 1), (1, 1), (0, 0, 0, 0), (1, 1), 1 |
| 189 | + data_layout, kernel_layout = "NCHW", "OIHW" |
| 190 | + dtype = "float32" |
| 191 | + |
| 192 | + f = get_conv2d_relu( |
| 193 | + data_shape, |
| 194 | + out_channels, |
| 195 | + kernel_size, |
| 196 | + strides, |
| 197 | + padding, |
| 198 | + dilation, |
| 199 | + groups, |
| 200 | + data_layout, |
| 201 | + kernel_layout, |
| 202 | + dtype, |
| 203 | + ) |
| 204 | + |
| 205 | + mod, params = testing.create_workload(f) |
| 206 | + verify_meta_schedule_with_tensorrt(mod, params, data_shape) |
| 207 | + |
| 208 | + |
| 209 | +@tvm.testing.requires_cuda |
| 210 | +@has_tensorrt_codegen |
| 211 | +@has_tensorrt_runtime |
| 212 | +@pytest.mark.parametrize( |
| 213 | + "model_name", |
| 214 | + ["resnet-50", "mobilenet"], |
| 215 | +) |
| 216 | +@pytest.mark.parametrize("batch_size", [1]) |
| 217 | +@pytest.mark.parametrize("use_meta_sched", [True]) |
| 218 | +@pytest.mark.parametrize("use_trt", [True, False]) |
| 219 | +def test_relay_model(model_name: str, batch_size: int, use_meta_sched: bool, use_trt: bool): |
| 220 | + |
| 221 | + mod, params, input_shape, output_shape = get_network(name=model_name, batch_size=batch_size) |
| 222 | + verify_meta_schedule_with_tensorrt( |
| 223 | + mod, params, input_shape, use_meta_sched=use_meta_sched, use_trt=use_trt, mode="vm" |
| 224 | + ) |
| 225 | + |
| 226 | + |
| 227 | +if __name__ == "__main__": |
| 228 | + sys.exit(pytest.main([__file__] + sys.argv[1:])) |
0 commit comments