-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathpl_modules.py
523 lines (474 loc) · 23.3 KB
/
pl_modules.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
from typing import Any
from math import sqrt
import numpy as np
import pytorch_lightning as pl
import torch
import torch as th
from utils import plot_samples_on_3_simplex, plot_traj_on_3_simplex, compute_Lfx
from torch import nn
from torch.autograd.functional import jvp
from torch.nn import functional as F
from advertorch.attacks import LinfPGDAttack, L2PGDAttack
from advertorch.context import ctx_noparamgrad_and_eval
import matplotlib.pyplot as plt
from autoattack import AutoAttack
import torchattacks
from models import IVP
ADAPTIVE_SOLVERS = ['dopri8', 'dopri5', 'bosh3', 'fehlberg2', 'adaptive_heun',
'scipy_solver']
FIXED_SOVLERS = ['euler', 'midpoint', 'rk4', 'explicit_adams',
'implicit_adams', 'fixed_adams']
def make_solver_params(solver_name, ode_tol):
if solver_name in ADAPTIVE_SOLVERS:
return dict(method=solver_name, rtol=ode_tol, atol=ode_tol)
elif solver_name in FIXED_SOVLERS:
return dict(
method=solver_name,
options=dict(
step_size=ode_tol
)
)
else:
raise RuntimeError('[ERROR] Invalid Solver Name')
class AdversarialLearning(pl.LightningModule):
def __init__(self, attacker, model) -> None:
super().__init__()
self.attacker = attacker
self.model = model
self.criterion = nn.CrossEntropyLoss(reduction='none')
self.run_adv = False
self.check = False
def test_step(self, batch, batch_idx):
im, label = batch
if self.run_adv:
self.attacker.device = im.device
with torch.enable_grad():
im_adv = self.attacker.run_standard_evaluation(im, label, bs=im.shape[0])
with torch.no_grad():
net_out = self.model(im_adv)
y_hat = net_out.argmax(dim=-1)
error = (y_hat != label).float().mean()
self.log('adv_test_error', error, on_epoch=True, on_step=False, logger=True)
return error
else:
net_out = self.model(im)
_, y_hat = th.max(net_out, dim=-1)
error = (y_hat != label).float().mean()
self.log('nominal_test_error', error, on_epoch=True, on_step=False, logger=True)
return error
class GeneralLearning(pl.LightningModule):
def __init__(self, opt_name="SGD",
lr=1e-3, momentum=0.9, weight_decay=1e-4,
decay_epochs=[30, 60, 90], beta1=0.9, beta2=0.999,
scheduler_name="cos_anneal", max_epochs=200, warmup=20,
adv_train=False, eps=36/255, norm='L2', simplex=False, act='relu',
fix_backbone=False, val_adv=True):
super().__init__()
self.opt_name = opt_name
self.lr = lr
self.betas = (beta1, beta2)
self.decay_epochs = decay_epochs
self.weight_decay = weight_decay
self.momentum = momentum
self.criterion = nn.CrossEntropyLoss()
self.criterion_per_el = nn.CrossEntropyLoss(reduction='none')
self.scheduler_name = scheduler_name
self.max_epochs = max_epochs
self.warmup = warmup
self.adv_train = adv_train
self.eps = eps
self.norm = norm
self.simplex = simplex
self.adversary = None
self.attacker = None
self.act = act
self.fix_backbone = fix_backbone
self.val_adv = val_adv
def configure_optimizers(self):
if self.opt_name == 'Adam':
optimizer = th.optim.Adam(self.parameters(),
lr=self.lr,
weight_decay=self.weight_decay,
amsgrad=False,
betas=self.betas)
elif self.opt_name == "AdamW":
optimizer = th.optim.AdamW(self.parameters(), lr=self.lr,
weight_decay=self.weight_decay,
amsgrad=False,
betas=self.betas)
elif self.opt_name == 'SGD':
if self.fix_backbone:
optimizer = torch.optim.SGD(self.model.dyn_fun.parameters(),
lr=self.lr,
momentum=self.momentum,
weight_decay=self.weight_decay)
else:
optimizer = torch.optim.SGD(self.parameters(),
lr=self.lr,
momentum=self.momentum,
weight_decay=self.weight_decay)
else:
raise RuntimeError(
f"[ERROR] Invalid Optimizer Param: {self.opt_name}")
if self.scheduler_name == 'cos_anneal':
scheduler = th.optim.lr_scheduler.CosineAnnealingLR(optimizer=optimizer, T_max=self.max_epochs)
elif self.scheduler_name == 'step':
scheduler = th.optim.lr_scheduler.MultiStepLR(optimizer=optimizer, milestones=self.decay_epochs, gamma=0.1)
else:
# Can't have none scheduler
scheduler = None
lr_scheduler = {
'scheduler': scheduler,
# 'name': 'learning_rate',
'monitor': 'training_loss',
'interval': 'epoch',
'frequency': 1
}
if self.current_epoch < self.warmup:
optimizer = th.optim.Adam(self.parameters(),
lr=1e-3,
weight_decay=5e-4,
amsgrad=False,
betas=self.betas)
return [optimizer]
else:
return [optimizer], [lr_scheduler]
def on_train_start(self) -> None:
if self.adv_train:
if self.norm == 'L2':
self.adversary = L2PGDAttack(
self.compute_loss, loss_fn=lambda x: x, eps=self.eps,
nb_iter=7, eps_iter=2.5*self.eps/7, rand_init=True, clip_min=0.0, clip_max=1.0, targeted=False)
elif self.norm == 'Linf':
self.adversary = LinfPGDAttack(
self.compute_loss, loss_fn=lambda x: x, eps=self.eps,
nb_iter=7, eps_iter=2.5*self.eps/7, rand_init=True, clip_min=0.0, clip_max=1.0, targeted=False)
def on_train_epoch_start(self):
if self.current_epoch == self.warmup:
new_opt, new_sched = self.configure_optimizers()
self.trainer.optimizers = new_opt
self.trainer.lr_schedulers = self.trainer._configure_schedulers(new_sched, monitor=False, is_manual_optimization=False)
def training_step(self, batch, batch_idx):
x, y = batch
batch_size = x.shape[0]
if self.adv_train:
with ctx_noparamgrad_and_eval(self):
x_adv = self.adversary.perturb(x, y)
loss = self.compute_loss(x_adv, y, batch_size, self.act)
else:
loss = self.compute_loss(x, y, batch_size, self.act)
self.log('training_loss', loss, on_step=True, on_epoch=True,
logger=True)
return loss
def compute_loss(self, x, y, batch_size, act):
raise NotImplementedError('[ERROR] Abstract Method.')
def validation_step(self, batch, batch_idxs):
x, y = batch
# run attack
# if self.trainer.current_epoch >= self.max_epochs // 2 and self.val_adv:
if self.val_adv:
if self.norm == 'L2':
atk = torchattacks.PGDL2(self, eps=self.eps, alpha=self.eps*2.5/10, steps=5)
elif self.norm == 'Linf':
atk = torchattacks.PGD(self, eps=self.eps, alpha=self.eps*2.5/10, steps=5)
with torch.enable_grad():
adv_images = atk(x, y)
with torch.no_grad():
net_out = self(x)
net_out_adv = self(adv_images)
y_hat_adv = net_out_adv.argmax(dim=-1)
error_adv = (y_hat_adv != y).float().mean()
y_hat = net_out.argmax(dim=-1)
error = (y_hat != y).float().mean()
else:
with torch.no_grad():
net_out = self(x)
y_hat = net_out.argmax(dim=-1)
error = (y_hat != y).float().mean()
# if not passing half of the training, do not run adv attacks
error_adv = error
if not self.simplex:
loss = self.criterion(net_out, y)
else:
print(f"Check Simplex! min: {net_out.min().detach().cpu().item()}, max: {net_out.max().detach().cpu().item()} ")
# assert net_out.min().detach().cpu().item() >= -1e-1 and net_out.max().detach().cpu().item() <= 1+1e-1, \
# f"Violating Simplex! min: {net_out.min().detach().cpu().item()}, max: {net_out.max().detach().cpu().item()} "
loss = F.nll_loss(torch.log(torch.clamp(net_out, min=1e-12)), y)
self.log('validation_loss', loss, on_epoch=True, on_step=False, logger=True, sync_dist=True)
self.log('validation_error', error, on_epoch=True, on_step=False, logger=True, sync_dist=True)
self.log('validation_adv_error', error_adv, on_epoch=True, on_step=False, logger=True, sync_dist=True)
return loss
def on_test_start(self) -> None:
if self.norm == 'L2':
self.attacker = AutoAttack(self, norm='L2', eps=self.eps, version='standard')
elif self.norm == 'Linf':
self.attacker = AutoAttack(self, norm='Linf', eps=self.eps, version='standard')
def test_step(self, batch, batch_idx):
x, y = batch
self.attacker.device = x.device
self.attacker.attacks_to_run = ['apgd-ce', 'apgd-t']
im_adv = self.attacker.run_standard_evaluation(x, y, bs=x.shape[0])
with torch.no_grad():
net_out_clean = self(x)
net_out_adv = self(im_adv)
loss = self.criterion(net_out_clean, y)
y_hat_clean = net_out_clean.argmax(dim=-1)
error_clean = (y_hat_clean != y).float().mean()
y_hat_adv = net_out_adv.argmax(dim=-1)
error_adv = (y_hat_adv != y).float().mean()
self.log('test_loss_clean', loss, on_epoch=True, on_step=False, logger=True)
self.log('test_error_clean', error_clean, on_epoch=True, on_step=False, logger=True)
self.log('test_error_adv', error_adv, on_epoch=True, on_step=False, logger=True)
return loss
class ClassicalLearning(GeneralLearning):
def __init__(self, model: nn.Module, opt_name="SGD",
lr=1e-3,
momentum=0.9,
weight_decay=1e-4,
decay_epochs=[30, 60, 90],
beta1=0.9, beta2=0.999, eps=1e-8,
scheduler_name="cos_anneal", max_epochs=200, warmup=20):
super().__init__(
opt_name=opt_name,
lr=lr,
momentum=momentum,
weight_decay=weight_decay,
decay_epochs=decay_epochs,
beta1=beta1, beta2=beta2, eps=eps,
scheduler_name=scheduler_name, max_epochs=max_epochs, warmup=warmup)
self.model = model
def forward(self, x):
return self.model(x)
def compute_loss(self, x, y, batch_size):
return self.criterion(self.model(x), y)
class ODELearning(GeneralLearning):
def __init__(self, dynamics: nn.Module,
output,
n_input,
n_output,
init_fun,
t_max=1.0,
train_ode_solver='dopri5',
train_ode_tol=1e-6,
val_ode_solver='dopri5',
val_ode_tol=1e-6,
opt_name="SGD",
lr=1e-3,
momentum=0.9,
weight_decay=1e-4,
decay_epochs=[30, 60, 90],
beta1=0.9, beta2=0.999,
scheduler_name="cos_anneal", max_epochs=200, warmup=20,
adv_train=False, eps=127/255, norm='L2',
simplex=False, act='relu', fix_backbone=False, val_adv=True):
super().__init__(
opt_name=opt_name, lr=lr, momentum=momentum, weight_decay=weight_decay,
decay_epochs=decay_epochs, beta1=beta1, beta2=beta2, scheduler_name=scheduler_name,
max_epochs=max_epochs, warmup=warmup, adv_train=adv_train, eps=eps, norm=norm, simplex=simplex, act=act,
fix_backbone=fix_backbone, val_adv=val_adv)
self.t_max = t_max
self.train_ode_solver = train_ode_solver
self.train_ode_tol = train_ode_tol
self.val_ode_solver = val_ode_solver
self.val_ode_tol = val_ode_tol
self.use_adjoint = False
self.model = IVP(n_input=n_input,
n_output=n_output,
init_coordinates=init_fun,
# n_hidden=tuple(h_dims),
ts=th.linspace(0, t_max, 2),
ode_tol=train_ode_tol,
dyn_fun=dynamics,
output_fun=output)
@property
def train_solver_params(self):
return make_solver_params(self.train_ode_solver,
self.train_ode_tol)
@property
def val_solver_params(self):
return make_solver_params(self.val_ode_solver,
self.val_ode_tol)
def forward(self, x, t_steps=2, return_traj=False):
return self.model(x, ts=th.linspace(0., self.t_max, t_steps, device=x.device),
int_params=self.val_solver_params,
use_adjoint=self.use_adjoint, return_traj=return_traj)
def compute_loss(self, x, y, batch_size, act='identity'):
y_hat = self.model(x, ts=th.linspace(0., self.t_max, 2, device=x.device),
int_params=self.train_solver_params,
use_adjoint=self.use_adjoint)
if not self.simplex:
return self.criterion(y_hat, y)
else:
return F.nll_loss(torch.log(y_hat), y)
class LyapunovLearning(ODELearning):
def __init__(self, order, h_sample_size, h_dist_lim, sampler,
sampler_scheduler,
dynamics: nn.Module, output, n_input, n_output, init_fun,
lya_cand,
t_max=1.0, train_ode_solver='dopri5', train_ode_tol=1e-6,
val_ode_solver='dopri5', val_ode_tol=1e-6, opt_name="SGD",
lr=1e-3, momentum=0.9, weight_decay=1e-4,
decay_epochs=[30, 60, 90], beta1=0.9, beta2=0.999,
scheduler_name="cos_anneal", max_epochs=200, warmup=20,
adv_train=False, eps=36/255, norm='L2',
simplex=False, act='relu', fix_backbone=False, val_adv=True,
barrier_loss=False, lips_train=False, relax_exp_stable=False, scaleLeps=3.,
train_ode=False, train_ode_epoch=100, epoch_off_scale=10, lips_warmup=0):
super().__init__(dynamics, output, n_input, n_output, init_fun, t_max,
train_ode_solver, train_ode_tol, val_ode_solver,
val_ode_tol, opt_name, lr, momentum, weight_decay,
decay_epochs, beta1, beta2, scheduler_name, max_epochs, warmup,
adv_train, eps, norm,
simplex, act, fix_backbone, val_adv)
self.barrier_loss = barrier_loss
self.lips_train = lips_train
self.relax_exp_stable = relax_exp_stable
self.scaleLeps = scaleLeps
self.train_ode = train_ode
self.train_ode_epoch = train_ode_epoch
self.epoch_off_scale = epoch_off_scale
self.lips_warmup = lips_warmup
self.sampler = sampler
self.sampler_scheduler = sampler_scheduler
self.order = order
self.h_sample_size = h_sample_size
self.h_dims = self.model.init_coordinates.h_dims
self.h_dist_lim = h_dist_lim
self.softmax = nn.Softmax(dim=1)
self.lya_cand = lya_cand
self.last_h_sample = None
self.last_val_batch = None
self.plot_saved_epoch = -1
def on_train_start(self) -> None:
GeneralLearning.on_train_start(self)
self.sampler.device_initialize(self.device)
def make_trajectories(self, x, t_steps=100):
net_out = self(x, t_steps=t_steps, return_traj=True)
h_sample_in = []
h_sample_in += [net_out.transpose(0,1).reshape(-1, net_out.shape[-1])]
t_sample = 0.
return t_sample, h_sample_in
def compute_loss(self, x, y, batch_size, act='identity'):
# Turn off scale nominal after 10 epochs
if self.current_epoch == self.epoch_off_scale:
self.model.dyn_fun.scale_nominal = False
static_state, _ = self.model.init_coordinates(x, self.model.dyn_fun)
if isinstance(static_state, list):
x_in = []
for weight_dyn in static_state:
x_in.append(weight_dyn[:, None].expand(-1, self.h_sample_size, *((-1,)*(weight_dyn.ndim-1))).flatten(0, 1))
else:
x_in = static_state[:, None].expand(-1, self.h_sample_size, *((-1,)*(static_state.ndim-1))).flatten(0, 1)
y_in = y[:, None].expand(-1, self.h_sample_size).flatten(0, 1)
def v_ndot(order: int, t_sample, *oc_in):
assert isinstance(order, int) and order >= 0, \
f"[ERROR] Order({order}) must be non-negative integer."
if order == 0:
return self.lya_cand(self.model.output_fun(oc_in), y_in)
elif order == 1:
return jvp(func=lambda *x: v_ndot(0, t_sample, *x),
inputs=tuple(oc_in),
v=self.model.dyn_fun.eval_dot(t_sample, tuple(oc_in), x_in),
create_graph=True)
else:
returns = tuple()
for i in range(1, order):
returns += v_ndot(i, t_sample, *oc_in)
returns += (jvp(func=lambda *x: v_ndot(order-1,t_sample, *x)[-1],
inputs=tuple(oc_in),
v=self.model.dyn_fun.eval_dot(t_sample, tuple(oc_in), x_in),
create_graph=True)[-1],)
return returns
mixing_weights = self.sampler_scheduler.get_mixer_coefficients(self.current_epoch)
for i, mi_w in enumerate(mixing_weights):
self.log(f'mixing_weight_{i}', mi_w)
t_samples, h_sample_in = self.sampler(x, y, self, self.h_sample_size, batch_size, mixing_weights)
if self.plot_saved_epoch < self.current_epoch:
self.plot_saved_epoch = self.current_epoch
self.last_h_sample = h_sample_in[0]
if self.order == 0:
raise NotImplementedError('[TODO] Implement this.')
elif self.order == 1:
v, vdot = v_ndot(1, t_samples, *h_sample_in)
if self.lips_train:
Lfx = compute_Lfx(self, x)
if self.trainer.global_step < self.lips_warmup: # around 10 warmup epochs
current_eps = 0.
elif self.trainer.global_step < (self.model.dyn_fun.kappa_length + self.lips_warmup):
current_eps = (self.trainer.global_step - self.lips_warmup) / self.model.dyn_fun.kappa_length * self.eps
else:
current_eps = self.eps
current_kappa = max(current_eps * sqrt(2) * Lfx, self.model.dyn_fun.kappa) + 1.
self.log('Lips', Lfx, on_step=True, logger=True, sync_dist=True)
else:
if self.trainer.global_step < self.model.dyn_fun.kappa_length:
current_kappa = self.trainer.global_step / self.model.dyn_fun.kappa_length * self.model.dyn_fun.kappa
else:
current_kappa = self.model.dyn_fun.kappa
self.log('kappa', current_kappa, on_step=True, logger=True, sync_dist=True)
if self.relax_exp_stable:
margin = torch.clamp(current_kappa * v.detach(), max=self.scaleLeps * self.model.dyn_fun.alpha_1 * self.eps)
else:
margin = current_kappa * v.detach()
if act == 'relu':
violations = th.relu(vdot + margin)
elif act == 'elu':
violations = F.elu(vdot + margin)
else:
violations = vdot + margin
violation_mask = violations > 0
effective_batch_size = (violation_mask).sum()
loss = violations.mean()
if self.barrier_loss:
f_tilde = self.model.dyn_fun._h_dot_raw(h_sample_in[0], x_in)
lower = -self.model.dyn_fun.alpha_1 * h_sample_in[0]
upper = self.model.dyn_fun.alpha_2 * (1 - h_sample_in[0])
self.log('train_monte_carlo_loss', loss, on_step=True, logger=True, sync_dist=True)
loss_barrier = 100*th.relu(f_tilde - upper).mean() + th.relu(lower - f_tilde).mean()
self.log('train_barrier_loss', loss_barrier, on_step=True, logger=True, sync_dist=True)
if hasattr(self.model.dyn_fun, 'scale_nominal'):
# if not self.model.dyn_fun.scale_nominal:
with torch.no_grad():
f = self.model.dyn_fun.eval_dot(0, h_sample_in, x_in)
lower = -self.model.dyn_fun.alpha_1 * h_sample_in[0]
upper = self.model.dyn_fun.alpha_2 * (1-h_sample_in[0])
active_constraint_mask = ((f - lower).abs() <= 1e-6) | (
(f - upper).abs() <= 1e-6)
mean_active = active_constraint_mask.float().mean()
self.log('mean_active_constraints', mean_active, on_step=True, logger=True, sync_dist=True)
self.log('effective_batch_size', effective_batch_size, on_step=True, logger=True, sync_dist=True)
h_sample_in = None
x_in = None
y_in = None
if self.train_ode and self.trainer.current_epoch > self.train_ode_epoch:
y_hat = self.model(x, ts=th.linspace(0., self.t_max, 2, device=self.device),
int_params=self.train_solver_params,
use_adjoint=self.use_adjoint, return_traj=False)
if not self.simplex:
loss_ode = self.criterion(y_hat, y)
else:
loss_ode = F.nll_loss(torch.log(y_hat), y)
loss_ode_portion = min(0.98, (self.trainer.current_epoch - self.train_ode_epoch) / 50.)
loss_portion = 1 - loss_ode_portion
return loss * loss_portion + loss_ode * loss_ode_portion
else:
return loss
def validation_step(self, batch, batch_idxs):
super(ODELearning, self).validation_step(batch, batch_idxs)
self.last_val_batch = batch
def on_validation_end(self):
if self.h_dims[0] == 3:
if self.last_h_sample is not None:
self.logger.experiment.log({
"H samples": plot_samples_on_3_simplex(self.last_h_sample),
"epoch": self.current_epoch})
if self.last_val_batch is not None:
x, y = self.last_val_batch
trajectory = self.model(x, ts=th.linspace(0., self.t_max, 100, device=x.device),
int_params=self.val_solver_params,
use_adjoint=self.use_adjoint, return_traj=True)
self.logger.experiment.log({
"sample_trajectories": plot_traj_on_3_simplex(trajectory, y),
"epoch": self.current_epoch
})
super(ODELearning, self).on_validation_end()