-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhf_program_parser.py
222 lines (184 loc) · 8.92 KB
/
hf_program_parser.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
# using huggingface transformers to write program parser
# train on AGQA2, and inference on other video qa dataset
import os
import sys
import json
import pickle
import argparse
import logging
import random
import pandas as pd
import torch
from torch.utils.data import Dataset, DataLoader
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, GenerationConfig, T5ForConditionalGeneration, T5Config
from transformers import TrainingArguments, Trainer
sys.path.append('../')
from tqdm import tqdm
from utils.program_parser import program_is_valid
logging.basicConfig(level=logging.INFO, format='%(asctime)s %(levelname)-8s %(message)s')
device = torch.device('cuda:0')
# os.environ['WANDB_DISABLED'] = 'true'
class AGQAProgramDataset(Dataset):
def __init__(self, data_path, data_length=None):
self.data = pickle.load(open(data_path, 'rb'))
if data_length is not None and len(self.data) > data_length:
self.data = random.sample(self.data, data_length)
# self.tokenizer = tokenizer
logging.info('dataset length: %d', len(self))
def __len__(self):
return len(self.data)
def __getitem__(self, index):
question = self.data[index]['question']
program = ' '.join(self.data[index]['nmn_program'])
return question, program
class Collator:
def __init__(self, tokenizer, max_length=128, has_program=False) -> None:
self.tokenizer = tokenizer
self.max_length = max_length
self.has_program = has_program
self.debug = True
def __call__(self, examples):
if self.debug:
logging.info('examples: {}'.format(examples))
question_list = [e[0] for e in examples]
model_inputs = self.tokenizer(question_list, max_length=self.max_length, truncation=True, padding='max_length', return_tensors='pt')
if self.has_program:
program_list = [e[1] for e in examples]
model_outputs = self.tokenizer(program_list, max_length=self.max_length, truncation=True, padding='max_length', return_tensors='pt')
model_inputs['labels'] = model_outputs['input_ids']
if self.debug:
logging.info('model_inputs: {}'.format(model_inputs))
self.debug = False
return model_inputs
else:
question_ids = [e[1] for e in examples]
if self.debug:
logging.info('model_inputs: {}'.format(model_inputs))
self.debug = False
return model_inputs, question_ids
class AGQAQuestionDataset(Dataset):
def __init__(self, data_path, data_length=None):
self.data = pickle.load(open(data_path, 'rb'))
logging.info('dataset length: %d', len(self))
def __len__(self):
return len(self.data)
def __getitem__(self, index):
return self.data[index]['question'], self.data[index]['qa_id']
class StarQuestionDataset(Dataset):
def __init__(self, data_path):
self.data = json.load(open(data_path))
logging.info('dataset length: %d', len(self))
def __len__(self):
return len(self.data)
def __getitem__(self, index):
return self.data[index]['question'], self.data[index]['question_id']
class NextqaQuestionDataset(Dataset):
def __init__(self, data_path):
self.data = pd.read_csv(data_path)
logging.info('dataset length: %d', len(self))
def __len__(self):
return len(self.data)
def __getitem__(self, index):
return self.data.loc[index, 'question'], str(index)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--func', type=str, choices=['train', 'test', 'check_valid'])
parser.add_argument('--train_data_path', type=str, default='/scratch/nlp/wangyueqian/AGQA/AGQA2_balanced_lite/train_balanced.pkl')
parser.add_argument('--valid_data_path', type=str, default='/scratch/nlp/wangyueqian/AGQA/AGQA2_balanced_lite/valid_balanced.pkl')
parser.add_argument('--valid_data_length', type=int, default=1600)
parser.add_argument('--model_path', type=str, default='/scratch/nlp/model_ckpts/flan-t5-large')
parser.add_argument('--tokenizer_path', type=str, default=None)
parser.add_argument('--output_path', type=str, default=None)
# train
parser.add_argument('--eval_interval', type=int, default=500)
parser.add_argument('--batch_size', type=int, default=64)
parser.add_argument('--max_length', type=int, default=128)
parser.add_argument('--num_beams', type=int, default=5)
parser.add_argument('--lr', type=float, default=1e-5)
# test
parser.add_argument('--dataset', type=str, default='STAR')
# check valid
parser.add_argument('--program_path', type=str, default=None)
args = parser.parse_args()
logging.info(args)
if args.func in ['train', 'test']:
config = T5Config.from_pretrained(args.model_path)
logging.info('transformer config: {}'.format(config))
model = T5ForConditionalGeneration.from_pretrained(args.model_path, config=config)
tokenizer = AutoTokenizer.from_pretrained(args.tokenizer_path if args.tokenizer_path is not None else args.model_path)
model.to(device)
if args.func == 'train':
train_dataset = AGQAProgramDataset(args.train_data_path)
valid_dataset = AGQAProgramDataset(args.valid_data_path, args.valid_data_length)
collator = Collator(tokenizer, args.max_length, has_program=True)
training_args = TrainingArguments(
output_dir=args.output_path,
evaluation_strategy='steps',
eval_steps=args.eval_interval,
save_steps=args.eval_interval,
num_train_epochs=5,
learning_rate=args.lr,
per_device_train_batch_size=args.batch_size,
per_device_eval_batch_size=args.batch_size,
warmup_steps=500,
weight_decay=0.01,
logging_dir=os.path.join(args.output_path, 'logs'),
logging_steps=100,
save_total_limit=3,
disable_tqdm=True,
report_to='tensorboard', # disable wandb
)
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=valid_dataset,
data_collator=collator,
)
trainer.train()
elif args.func == 'test':
if args.dataset == 'AGQA':
test_dataset = AGQAQuestionDataset(args.valid_data_path)
if args.dataset == 'STAR':
test_dataset = StarQuestionDataset(args.valid_data_path)
elif args.dataset == 'MSRVTT':
test_dataset = StarQuestionDataset(args.valid_data_path) # they have same format
elif args.dataset == 'NEXTQA':
test_dataset = NextqaQuestionDataset(args.valid_data_path)
collator = Collator(tokenizer, args.max_length, has_program=False)
test_dataloader = DataLoader(test_dataset, batch_size=args.batch_size, shuffle=False, collate_fn=collator, num_workers=1)
generation_config = GenerationConfig.from_pretrained(args.model_path)
generation_config.num_beams = args.num_beams
generation_config.num_return_sequences = args.num_beams
generation_config.do_sample = False
generation_config.early_stopping = True
generation_config.max_new_tokens = args.max_length
logging.info('generation_config: {}'.format(generation_config))
with torch.no_grad(), open(args.output_path, 'w') as f_out:
global_id = 0
for batch, question_ids in test_dataloader:
batch.to(device)
model_output = model.generate(**batch, generation_config=generation_config, return_dict_in_generate=True)
# logging.info('model generated: {}'.format(model_output))
decoded_text = tokenizer.batch_decode(model_output.sequences, skip_special_tokens=True)
decoded_question = tokenizer.batch_decode(batch['input_ids'], skip_special_tokens=True)
for i in range(len(decoded_question)):
for j in range(args.num_beams):
f_out.write('%s\t%s\t%s\n' % (question_ids[i], decoded_question[i], decoded_text[i*args.num_beams+j]))
global_id += 1
elif args.func == 'check_valid':
total = 0
valid_programs = set()
with open(args.program_path, 'r') as f:
for line in tqdm(f.readlines()):
try:
id_, question, program = line.strip().split('\t')
except:
print(line)
continue
total += 1 / args.num_beams
if id_ in valid_programs:
continue
if program_is_valid(program.split(' ')):
valid_programs.add(id_)
logging.info('total: %d, valid: %d, invalid: %d, valid_rate: %.4lf' % (total, len(valid_programs), total-len(valid_programs), len(valid_programs)/total))