forked from jarrycyx/UNN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcuts_main.py
374 lines (311 loc) · 17.5 KB
/
cuts_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
import logging
import os
from os.path import join as opj
from os.path import dirname as opd
from os.path import basename as opb
from os.path import splitext as ops
import tqdm
import numpy as np
import argparse
from omegaconf import OmegaConf
from copy import deepcopy
import torch
from torch import dropout, nn
from utils.cuts_parts import *
from utils.gumbel_softmax import gumbel_softmax
from utils.misc import plot_causal_matrix, reproduc, plot_causal_matrix_in_training, calc_and_log_metrics, log_time_series, prepross_data
from utils.batch_generater import batch_generater
from utils.opt_type import CUTSopt
from utils.logger import MyLogger
from utils.data_interpolate import interp_multivar_data
from utils.load_data import simulate_var_from_links, simulate_var, simulate_lorenz_96_process, load_netsim_data
from datetime import datetime
import os
from einops import rearrange
class CUTS(object):
def __init__(self, args: CUTSopt.CUTSargs, log, device="cuda"):
self.log: MyLogger = log
self.args = args
self.device = device
if self.args.data_pred.model == "multi_mlp":
self.fitting_model = MultiMLP(self.args.input_step * self.args.n_nodes * self.args.data_dim,
self.args.data_pred.mlp_hid,
self.args.data_dim * self.args.data_pred.pred_step,
self.args.data_pred.mlp_layers,
self.args.n_nodes).to(self.device)
elif self.args.data_pred.model == "multi_lstm":
self.fitting_model = MultiLSTM(self.args.n_nodes * self.args.data_dim,
self.args.data_pred.mlp_hid,
self.args.data_dim * self.args.data_pred.pred_step,
self.args.data_pred.mlp_layers,
self.args.n_nodes).to(self.device)
else:
raise NotImplementedError
self.data_pred_loss = nn.MSELoss()
self.data_pred_optimizer = torch.optim.Adam(self.fitting_model.parameters(),
lr=self.args.data_pred.lr_data_start,
weight_decay=self.args.data_pred.weight_decay)
if "every" in self.args.fill_policy:
lr_schedule_length = int(self.args.fill_policy.split("_")[-1])
else:
lr_schedule_length = self.args.total_epoch
gamma = (self.args.data_pred.lr_data_end / self.args.data_pred.lr_data_start) ** (1 / lr_schedule_length)
self.data_pred_scheduler = torch.optim.lr_scheduler.StepLR(
self.data_pred_optimizer, step_size=1, gamma=gamma)
if hasattr(self.args, "disable_graph") and self.args.disable_graph:
print("Using full graph and disable graph discovery...")
self.graph = nn.Parameter(torch.ones([self.args.n_nodes, self.args.n_nodes, self.args.input_step]).to(self.device) * 1000)
else:
self.graph = nn.Parameter(torch.ones([self.args.n_nodes, self.args.n_nodes, self.args.input_step]).to(self.device) * 0)
# self.graph = nn.Parameter(torch.zeros([self.args.n_nodes, self.args.n_nodes, self.args.input_step]).to(self.device))
self.graph_optimizer = torch.optim.Adam([self.graph], lr=self.args.graph_discov.lr_graph_start)
gamma = (self.args.graph_discov.lr_graph_end / self.args.graph_discov.lr_graph_start) ** (1 / self.args.total_epoch)
self.graph_scheduler = torch.optim.lr_scheduler.StepLR(self.graph_optimizer, step_size=1, gamma=gamma)
end_tau, start_tau = self.args.graph_discov.end_tau, self.args.graph_discov.start_tau
self.gumbel_tau_gamma = (end_tau / start_tau) ** (1 / self.args.total_epoch)
self.gumbel_tau = start_tau
self.start_tau = start_tau
end_lmd, start_lmd = self.args.graph_discov.lambda_s_end, self.args.graph_discov.lambda_s_start
self.lambda_gamma = (end_lmd / start_lmd) ** (1 / self.args.total_epoch)
self.lambda_s = start_lmd
def latent_data_pred(self, x, y, observ_mask):
def sample_graph(sample_matrix, batch_size, prob=True):
sample_matrix = torch.sigmoid(
sample_matrix[None, :, :, :].expand(batch_size, -1, -1, -1))
if prob:
return torch.bernoulli(sample_matrix)
else:
return sample_matrix
bs, n, m, t, d = x.shape
self.fitting_model.train()
self.data_pred_optimizer.zero_grad()
# graph_no_self = self.graph.clone()
# for i in range(graph_no_self.shape[0]):
# graph_no_self[i,i,:] = torch.ones_like(graph_no_self[i,i,:]) * -1000
if hasattr(self.args.data_pred, "disable_graph") and \
self.args.data_pred.disable_graph:
sampled_graph = torch.ones_like(self.graph)[None].expand(bs, -1, -1, -1)
else:
sampled_graph = sample_graph(self.graph, bs, self.args.data_pred.prob)
y_pred = self.fitting_model(x, sampled_graph)
loss = self.data_pred_loss(y * observ_mask, y_pred * observ_mask) / torch.mean(observ_mask)
loss.backward()
self.data_pred_optimizer.step()
return y_pred, loss
def graph_discov(self, x, y, observ_mask):
def sigmoid_gumbel_sample(graph, batch_size, tau=1):
prob = torch.sigmoid(graph[None, :, :, :, None].expand(batch_size, -1, -1, -1, -1))
logits = torch.concat([prob, (1-prob)], axis=-1)
samples = gumbel_softmax(logits, tau=tau)[:, :, :, :, 0]
return samples
# self.fitting_model.eval()
self.graph_optimizer.zero_grad()
prob_graph = torch.sigmoid(self.graph[None, :, :])
sample_graph = sigmoid_gumbel_sample(self.graph, self.args.batch_size, tau=self.gumbel_tau)
y_pred = self.fitting_model(x, sample_graph)
gs = prob_graph.shape
loss_sparsity = torch.norm(prob_graph, p=1) / (gs[0] * gs[1] * gs[2])
loss_data = self.data_pred_loss(y * observ_mask, y_pred * observ_mask) / torch.mean(observ_mask)
loss = loss_sparsity * self.lambda_s + loss_data
loss.backward()
self.graph_optimizer.step()
return loss, loss_sparsity, loss_data
def train(self, data, observ_mask, original_data, true_cm=None):
original_data = torch.from_numpy(original_data).float().to(self.device)
observ_mask = torch.from_numpy(observ_mask).float().to(self.device)
data = torch.from_numpy(data).float().to(self.device)
if self.args.supervision_policy == "masked":
print("Using masked supervision for data prediction...")
elif self.args.supervision_policy == "full":
print("Using full supervision for data prediction......")
observ_mask = torch.ones_like(observ_mask)
elif "masked_before" in self.args.supervision_policy:
print(f"Using masked supervision for data prediction ({self.args.supervision_policy:s})......")
latent_pred_step = 0
graph_discov_step = 0
pbar = tqdm.tqdm(total=self.args.total_epoch)
data_interp = deepcopy(data)
original_mask = deepcopy(observ_mask)
auc = 0
for epoch_i in range(self.args.total_epoch):
if "every" in self.args.fill_policy:
update_every = int(self.args.fill_policy.split("_")[-1])
if (epoch_i+1) % update_every == 0:
data = data_pred
print("Update data!")
# self.graph_optimizer.param_groups[0]['lr'] = self.args.graph_discov.lr_graph_start
self.data_pred_optimizer.param_groups[0]['lr'] = self.args.data_pred.lr_data_start
observ_mask = torch.ones_like(original_mask)
elif "rate" in self.args.fill_policy:
update_rate = float(self.args.fill_policy.split("_")[1])
update_after = int(self.args.fill_policy.split("_")[3])
if epoch_i+1 > update_after:
if epoch_i == update_after:
print("Data update started!")
data = data * (1 - update_rate) + data_pred * update_rate
else:
# no data update
pass
if "masked_before" in self.args.supervision_policy:
masked_before = int(self.args.supervision_policy.split("_")[2])
if epoch_i == masked_before:
print("Using full supervision for data prediction......")
observ_mask = torch.ones_like(original_mask)
self.gumbel_tau = self.start_tau
# Data Prediction
if hasattr(self.args, "data_pred"):
if hasattr(self.args, "sample_period"):
sample_period = self.args.sample_period
else:
sample_period = 1
##
batch_gen = batch_generater(data, observ_mask, # !!!!! TO-DO
bs=self.args.batch_size,
n_nodes=self.args.n_nodes,
input_step=self.args.input_step,
pred_step=self.args.data_pred.pred_step,
sample_period=sample_period)
batch_gen = list(batch_gen)
data_pred = deepcopy(data) # masked data points are predicted
data_pred_all = deepcopy(data)
for x, y, t, mask in batch_gen:
latent_pred_step += self.args.batch_size
y_pred, loss = self.latent_data_pred(x, y, mask)
data_pred[t] = (y_pred*(1-mask) + y*mask).clone().detach()[:,:,0]
data_pred_all[t] = y_pred.clone().detach()[:,:,0]
self.log.log_metrics({"latent_data_pred/pred_loss": loss.item()}, latent_pred_step)
pbar.set_postfix_str(f"S1 loss={loss.item():.2f}, spr=IDLE, auc={auc:.4f}")
current_data_pred_lr = self.graph_optimizer.param_groups[0]['lr']
self.log.log_metrics({"graph_discov/lr": current_data_pred_lr}, latent_pred_step)
self.data_pred_scheduler.step()
mse_pred_to_original = self.data_pred_loss(original_data, data_pred)
mse_interp_to_original = self.data_pred_loss(original_data, data_interp)
self.log.log_metrics({"latent_data_pred/mse_pred_to_original": mse_pred_to_original,
"latent_data_pred/mse_interp_to_original": mse_interp_to_original}, latent_pred_step)
# Graph Discovery
if hasattr(self.args, "graph_discov"):
# batch_gen = batch_generater(data, observ_mask,
# bs=self.args.batch_size,
# n_nodes=self.args.n_nodes,
# input_step=self.args.input_step,
# pred_step=self.args.data_pred.pred_step,
# sample_period=period)
for x, y, t, mask in batch_gen:
graph_discov_step += self.args.batch_size
if hasattr(self.args, "disable_graph") and self.args.disable_graph:
pass
else:
loss, loss_sparsity, loss_data = self.graph_discov(x, y, mask)
self.log.log_metrics({"graph_discov/sparsity_loss": loss_sparsity.item(),
"graph_discov/data_loss": loss_data.item(),
"graph_discov/total_loss": loss.item()}, graph_discov_step)
pbar.set_postfix_str(f"S2 loss={loss_data.item():.2f}, spr={loss_sparsity.item():.2f}, auc={auc:.4f}")
self.graph_scheduler.step()
current_graph_disconv_lr = self.graph_optimizer.param_groups[0]['lr']
self.log.log_metrics({"graph_discov/lr": current_graph_disconv_lr}, graph_discov_step)
self.log.log_metrics({"graph_discov/tau": self.gumbel_tau}, graph_discov_step)
self.gumbel_tau *= self.gumbel_tau_gamma
pbar.update(1)
self.lambda_s *= self.lambda_gamma
calc, val = self.args.causal_thres.split("_")
if calc == "value":
threshold = float(val)
else:
raise NotImplementedError
time_coef_mat = self.graph.detach().cpu().numpy()
plot_roc = False
if (epoch_i+1) % self.args.show_graph_every == 0:
avg_mask = np.mean(observ_mask.cpu().numpy(), axis=(0,2))
if np.min(avg_mask) < 1:
time_series_idx = int(np.argwhere(avg_mask < 1)[0])
else:
time_series_idx = 0
log_time_series(original_data.cpu()[-100:,time_series_idx],
data_interp.cpu()[-100:,time_series_idx],
data_pred_all.cpu()[-100:,time_series_idx], log=self.log, log_step=latent_pred_step)
plot_causal_matrix_in_training(time_coef_mat, self.log, graph_discov_step, threshold=threshold)
plot_roc = True
# Show TPR FPR AUC ROC
if true_cm is not None:
time_prob_mat = torch.sigmoid(self.graph).detach().cpu().numpy()
auc = calc_and_log_metrics(time_prob_mat, true_cm, self.log, graph_discov_step, threshold=threshold, plot_roc=plot_roc)
def prepare_data(opt):
if opt.name == "uniform_var":
data, beta, true_cm = simulate_var(**opt.param)
elif opt.name == "var":
data, true_cm = simulate_var_from_links(**opt.param)
elif opt.name == "lorenz_96":
data, true_cm = simulate_lorenz_96_process(**opt.param)
elif opt.name == "zeros": # for debug
data = np.zeros([opt.param.T, opt.param.N, 1])
elif opt.name == "netsim":
data, true_cm = load_netsim_data(**opt.param)
else:
raise NotImplementedError
T, N, D = data.shape
print("Data shape: ", data.shape)
data = prepross_data(data)
mask = np.ones_like(data)
if hasattr(opt.pre_sample, "period") or hasattr(opt.pre_sample, "random_period"):
if hasattr(opt.pre_sample, "period"):
assert N == len(opt.pre_sample.period), "opt.pre_sample.period length not matched"
period = opt.pre_sample.period
print("Using sampling periods: ", period)
elif hasattr(opt.pre_sample, "random_period"):
np.random.seed(opt.pre_sample.random_period.seed)
period = np.random.choice(opt.pre_sample.random_period.choices, N, p=opt.pre_sample.random_period.prob)
print("Generated presampling periods: ", period)
mask *= 0
for i in range(N):
period_i = period[i]
mask[::period_i, i] += 1
elif hasattr(opt.pre_sample, "random_missing"):
np.random.seed(opt.pre_sample.random_missing.seed)
p = opt.pre_sample.random_missing.missing_prob
missing_var = opt.pre_sample.random_missing.missing_var
if isinstance(missing_var, str) and missing_var=="all":
mask = np.random.choice([0,1], size=mask.shape, p=[p,1-p])
else:
for var_i in missing_var:
mask[:,var_i] = np.random.choice([0,1], size=mask[:,var_i].shape, p=[p,1-p])
print(f"Generated random missing with missing_prob: {p:.4f}")
else:
raise NotImplementedError
sampled_data = data * mask
interp_data = interp_multivar_data(sampled_data, mask, interp=opt.init_fill)
return interp_data, mask, true_cm, data
def main(opt: CUTSopt, device="cuda"):
reproduc(**opt.reproduc)
timestamp = datetime.now().strftime("_%Y_%m%d_%H%M%S_%f")
opt.task_name += timestamp
proj_path = opj(opt.dir_name, opt.task_name)
log = MyLogger(log_dir=proj_path, **opt.log)
log.log_opt(opt)
data, mask, true_cm, original_data = prepare_data(opt.data)
# data = data / 20
if true_cm is not None:
sub_cg = plot_causal_matrix(
true_cm,
figsize=[1.5*data.shape[1], 1*data.shape[1]])
log.log_figures(name="True Graph", figure=sub_cg, iters=0)
if hasattr(opt, "cuts"):
cuts = CUTS(opt.cuts, log, device=device)
cuts.train(data, mask, original_data, true_cm)
if __name__ == "__main__":
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
parser = argparse.ArgumentParser(description='Batch Compress')
parser.add_argument('-opt', type=str, default=opj(opd(__file__),
'cuts_example.yaml'), help='yaml file path')
parser.add_argument('-g', help='availabel gpu list', default='0', type=str)
parser.add_argument('-debug', action='store_true')
parser.add_argument('-log', action='store_true')
args = parser.parse_args()
if args.g == "mps":
os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1"
device = "mps"
elif args.g == "cpu":
device = "cpu"
else:
os.environ["CUDA_VISIBLE_DEVICES"] = args.g
device = "cuda"
main(OmegaConf.load(args.opt), device=device)