-
Notifications
You must be signed in to change notification settings - Fork 61
/
test_pasd.py
307 lines (269 loc) · 16.6 KB
/
test_pasd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
import os
import sys
import cv2
import glob
import argparse
import open_clip
import numpy as np
from PIL import Image
import safetensors.torch
import torch
from torchvision import transforms
import torch.utils.checkpoint
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import set_seed
from diffusers import AutoencoderKL, PNDMScheduler, LCMScheduler, UniPCMultistepScheduler, DPMSolverMultistepScheduler#, StableDiffusionControlNetPipeline
from diffusers.utils import check_min_version
from diffusers.utils.import_utils import is_xformers_available
from transformers import CLIPTextModel, CLIPTokenizer, CLIPImageProcessor
from pasd.pipelines.pipeline_pasd import StableDiffusionControlNetPipeline
from pasd.myutils.misc import load_dreambooth_lora
from pasd.myutils.wavelet_color_fix import wavelet_color_fix
#from annotator.retinaface import RetinaFaceDetection
sys.path.append('PASD')
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
check_min_version("0.18.0.dev0")
logger = get_logger(__name__, log_level="INFO")
def load_pasd_pipeline(args, accelerator, enable_xformers_memory_efficient_attention):
if args.use_pasd_light:
from pasd.models.pasd_light.unet_2d_condition import UNet2DConditionModel
from pasd.models.pasd_light.controlnet import ControlNetModel
else:
from pasd.models.pasd.unet_2d_condition import UNet2DConditionModel
from pasd.models.pasd.controlnet import ControlNetModel
# Load scheduler, tokenizer and models.
if args.control_type=="grayscale":
scheduler = UniPCMultistepScheduler.from_pretrained("/".join(args.pasd_model_path.split("/")[:-1]), subfolder="scheduler")
else:
scheduler = UniPCMultistepScheduler.from_pretrained(args.pretrained_model_path, subfolder="scheduler")
text_encoder = CLIPTextModel.from_pretrained(args.pretrained_model_path, subfolder="text_encoder")
tokenizer = CLIPTokenizer.from_pretrained(args.pretrained_model_path, subfolder="tokenizer")
vae = AutoencoderKL.from_pretrained(args.pretrained_model_path, subfolder="vae")
feature_extractor = CLIPImageProcessor.from_pretrained(f"{args.pretrained_model_path}/feature_extractor")
unet = UNet2DConditionModel.from_pretrained(args.pasd_model_path, subfolder="unet")
controlnet = ControlNetModel.from_pretrained(args.pasd_model_path, subfolder="controlnet")
personalized_model_root = "checkpoints/personalized_models"
if args.use_personalized_model and args.personalized_model_path is not None:
if os.path.isfile(f"{personalized_model_root}/{args.personalized_model_path}"):
unet, vae, text_encoder = load_dreambooth_lora(unet, vae, text_encoder, f"{personalized_model_root}/{args.personalized_model_path}",
blending_alpha=args.blending_alpha, multiplier=args.multiplier)
else:
unet = UNet2DConditionModel.from_pretrained_orig(personalized_model_root, subfolder=f"{args.personalized_model_path}") # unet_disney
# Freeze vae and text_encoder
vae.requires_grad_(False)
text_encoder.requires_grad_(False)
unet.requires_grad_(False)
controlnet.requires_grad_(False)
# For mixed precision training we cast the text_encoder and vae weights to half-precision
# as these models are only used for inference, keeping weights in full precision is not required.
weight_dtype = torch.float32
if accelerator.mixed_precision == "fp16":
weight_dtype = torch.float16
elif accelerator.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
# Move text_encode and vae to gpu and cast to weight_dtype
text_encoder.to(accelerator.device, dtype=weight_dtype)
vae.to(accelerator.device, dtype=weight_dtype)
unet.to(accelerator.device, dtype=weight_dtype)
controlnet.to(accelerator.device, dtype=weight_dtype)
if enable_xformers_memory_efficient_attention:
if is_xformers_available():
unet.enable_xformers_memory_efficient_attention()
controlnet.enable_xformers_memory_efficient_attention()
else:
raise ValueError("xformers is not available. Make sure it is installed correctly")
# Get the validation pipeline
validation_pipeline = StableDiffusionControlNetPipeline(
vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, feature_extractor=feature_extractor,
unet=unet, controlnet=controlnet, scheduler=scheduler, safety_checker=None, requires_safety_checker=False,
)
#validation_pipeline.enable_vae_tiling()
validation_pipeline._init_tiled_vae(encoder_tile_size=args.encoder_tiled_size, decoder_tile_size=args.decoder_tiled_size)
if args.use_lcm_lora:
# load and fuse lcm lora
validation_pipeline.load_lora_weights(args.lcm_lora_path)
validation_pipeline.fuse_lora()
validation_pipeline.scheduler = LCMScheduler.from_config(validation_pipeline.scheduler.config)
return validation_pipeline
def load_high_level_net(args, device='cuda'):
if args.high_level_info == "classification":
from torchvision.models import resnet50, ResNet50_Weights
weights = ResNet50_Weights.DEFAULT
preprocess = weights.transforms()
resnet = resnet50(weights=weights)
resnet.eval()
return resnet, preprocess, weights.meta["categories"]
elif args.high_level_info == "detection":
from annotator.yolo import YoLoDetection
yolo = YoLoDetection()
return yolo, None, None
elif args.high_level_info == "caption":
if args.use_blip:
from lavis.models import load_model_and_preprocess
model, vis_processors, _ = load_model_and_preprocess(name="blip_caption", model_type="base_coco", is_eval=True, device=device)
return model, vis_processors, None
else:
#import open_clip
model, _, transform = open_clip.create_model_and_transforms(
model_name="coca_ViT-L-14",
pretrained="mscoco_finetuned_laion2B-s13B-b90k"
)
return model, transform, None
else:
return None, None, None
def get_validation_prompt(args, image, model, preprocess, category, device='cuda'):
validation_prompt = ""
if args.high_level_info == "classification":
batch = preprocess(image).unsqueeze(0)
prediction = model(batch).squeeze(0).softmax(0)
class_id = prediction.argmax().item()
score = prediction[class_id].item()
category_name = category[class_id]
#print(f"{category_name}: {100 * score:.1f}%")
if score >= 0.1:
validation_prompt = f"{category_name}, " if args.prompt=="" else f"{args.prompt}, {category_name}, "
elif args.high_level_info == "detection":
clses, confs, names = model.detect(image)
#print(cls, conf, names)
count = {}
for cls, conf in zip(clses, confs):
name = names[cls]
if name in count:
count[name] += 1
else:
count[name] = 1
for name in count:
validation_prompt += f"{count[name]} {name}, "
validation_prompt = validation_prompt if args.prompt=="" else f"{args.prompt}, {validation_prompt}"
elif args.high_level_info == "caption":
if args.use_blip:
image = preprocess["eval"](image).unsqueeze(0).to(device)
caption = model.generate({"image": image}, num_captions=1)[0]
caption = caption.replace("blurry", "clear").replace("noisy", "clean") #
validation_prompt = caption if args.prompt=="" else f"{caption}, {args.prompt}"
else:
image = preprocess(image).unsqueeze(0)
with torch.no_grad(), torch.cuda.amp.autocast():
generated = model.generate(image)
caption = open_clip.decode(generated[0]).split("<end_of_text>")[0].replace("<start_of_text>", "")
caption = caption.replace("blurry", "clear").replace("noisy", "clean") #
validation_prompt = caption if args.prompt=="" else f"{caption} {args.prompt}"
else:
validation_prompt = "" if args.prompt=="" else f"{args.prompt}, "
return validation_prompt
def main(args, enable_xformers_memory_efficient_attention=True,):
accelerator = Accelerator(
mixed_precision=args.mixed_precision,
)
# If passed along, set the training seed now.
if args.seed is not None:
set_seed(args.seed)
# Handle the output folder creation
if accelerator.is_main_process:
os.makedirs(args.output_dir, exist_ok=True)
# We need to initialize the trackers we use, and also store our configuration.
# The trackers initializes automatically on the main process.
if accelerator.is_main_process:
accelerator.init_trackers("PASD")
pipeline = load_pasd_pipeline(args, accelerator, enable_xformers_memory_efficient_attention)
model, preprocess, category = load_high_level_net(args, accelerator.device)
resize_preproc = transforms.Compose([
transforms.Resize(args.process_size, interpolation=transforms.InterpolationMode.BILINEAR),
] if args.control_type=="realisr" else [
transforms.Resize(args.process_size, max_size=args.process_size*2, interpolation=transforms.InterpolationMode.BILINEAR),
])
if accelerator.is_main_process:
generator = torch.Generator(device=accelerator.device)
if args.seed is not None:
generator.manual_seed(args.seed)
if os.path.isdir(args.image_path):
image_names = sorted(glob.glob(f'{args.image_path}/*.*'))
else:
image_names = [args.image_path]
for image_name in image_names[:]:
validation_image = Image.open(image_name).convert("RGB")
#validation_image = Image.new(mode='RGB', size=validation_image.size, color=(0,0,0))
if args.control_type == "realisr":
validation_prompt = get_validation_prompt(args, validation_image, model, preprocess, category)
validation_prompt += args.added_prompt # clean, extremely detailed, best quality, sharp, clean
negative_prompt = args.negative_prompt #dirty, messy, low quality, frames, deformed,
elif args.control_type == "grayscale":
validation_image = validation_image.convert("L").convert("RGB")
orig_img = validation_image.copy()
validation_prompt = get_validation_prompt(args, validation_image, model, preprocess, category, accelerator.device)
validation_prompt = validation_prompt.replace("black and white", "color")
negative_prompt = "b&w, color bleeding"
else:
raise NotImplementedError
print(validation_prompt)
ori_width, ori_height = validation_image.size
resize_flag = False
rscale = args.upscale if args.control_type=="realisr" else 1
validation_image = validation_image.resize((validation_image.size[0]*rscale, validation_image.size[1]*rscale))
if min(validation_image.size) < args.process_size or args.control_type=="grayscale":
validation_image = resize_preproc(validation_image)
validation_image = validation_image.resize((validation_image.size[0]//8*8, validation_image.size[1]//8*8))
#width, height = validation_image.size
resize_flag = True #
try:
image = pipeline(
args, validation_prompt, validation_image, num_inference_steps=args.num_inference_steps, generator=generator, #height=height, width=width,
guidance_scale=args.guidance_scale, negative_prompt=negative_prompt, conditioning_scale=args.conditioning_scale,
).images[0]
except Exception as e:
print(e)
continue
if args.control_type=="realisr":
if True: #args.conditioning_scale < 1.0:
image = wavelet_color_fix(image, validation_image)
if resize_flag:
image = image.resize((ori_width*rscale, ori_height*rscale))
name, ext = os.path.splitext(os.path.basename(image_name))
if args.control_type=='grayscale':
np_image = np.asarray(image)[:,:,::-1]
color_np = cv2.resize(np_image, orig_img.size)
orig_np = np.asarray(orig_img)
color_yuv = cv2.cvtColor(color_np, cv2.COLOR_BGR2YUV)
orig_yuv = cv2.cvtColor(orig_np, cv2.COLOR_BGR2YUV)
hires = np.copy(orig_yuv)
hires[:, :, 1:3] = color_yuv[:, :, 1:3]
np_image = cv2.cvtColor(hires, cv2.COLOR_YUV2BGR)
cv2.imwrite(f'{args.output_dir}/{name}.png', np_image)
else:
image.save(f'{args.output_dir}/{name}.png')
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--pretrained_model_path", type=str, default="checkpoints/stable-diffusion-v1-5", help="path of base SD model")
parser.add_argument("--lcm_lora_path", type=str, default="checkpoints/lcm-lora-sdv1-5", help="path of LCM lora model")
parser.add_argument("--pasd_model_path", type=str, default="runs/pasd/checkpoint-100000", help="path of PASD model")
parser.add_argument("--personalized_model_path", type=str, default="majicmixRealistic_v7.safetensors", help="name of personalized dreambooth model, path is 'checkpoints/personalized_models'") # toonyou_beta3.safetensors, majicmixRealistic_v6.safetensors, unet_disney
parser.add_argument("--control_type", choices=['realisr', 'grayscale'], nargs='?', default="realisr", help="task name")
parser.add_argument('--high_level_info', choices=['classification', 'detection', 'caption'], nargs='?', default='caption', help="high level information for prompt generation")
parser.add_argument("--prompt", type=str, default="", help="prompt for image generation")
parser.add_argument("--added_prompt", type=str, default="clean, high-resolution, 8k", help="additional prompt")
parser.add_argument("--negative_prompt", type=str, default="blurry, dotted, noise, raster lines, unclear, lowres, over-smoothed", help="negative prompt")
parser.add_argument("--image_path", type=str, default="examples/dog.png", help="test image path or folder")
parser.add_argument("--output_dir", type=str, default="output", help="output folder")
parser.add_argument("--mixed_precision", type=str, default="fp16", help="mixed precision mode") # no/fp16/bf16
parser.add_argument("--guidance_scale", type=float, default=9.0, help="classifier-free guidance scale")
parser.add_argument("--conditioning_scale", type=float, default=1.0, help="conditioning scale for controlnet")
parser.add_argument("--blending_alpha", type=float, default=1.0, help="blending alpha for personalized model")
parser.add_argument("--multiplier", type=float, default=0.6, help="multiplier for personalized lora model")
parser.add_argument("--num_inference_steps", type=int, default=20, help="denoising steps")
parser.add_argument("--process_size", type=int, default=768, help="minimal input size for processing") # 512?
parser.add_argument("--decoder_tiled_size", type=int, default=224, help="decoder tile size for saving GPU memory") # for 24G
parser.add_argument("--encoder_tiled_size", type=int, default=1024, help="encoder tile size for saving GPU memory") # for 24G
parser.add_argument("--latent_tiled_size", type=int, default=320, help="unet latent tile size for saving GPU memory") # for 24G
parser.add_argument("--latent_tiled_overlap", type=int, default=8, help="unet lantent overlap size for saving GPU memory") # for 24G
parser.add_argument("--upscale", type=int, default=1, help="upsampling scale")
parser.add_argument("--use_personalized_model", action="store_true", help="use personalized model or not")
parser.add_argument("--use_pasd_light", action="store_true", help="use pasd or pasd_light")
parser.add_argument("--use_lcm_lora", action="store_true", help="use lcm-lora or not")
parser.add_argument("--use_blip", action="store_true", help="use lcm-lora or not")
parser.add_argument("--init_latent_with_noise", action="store_true", help="initial latent with pure noise or not")
parser.add_argument("--added_noise_level", type=int, default=900, help="additional noise level")
parser.add_argument("--offset_noise_scale", type=float, default=0.0, help="offset noise scale, not used")
parser.add_argument("--seed", type=int, default=None, help="seed")
args = parser.parse_args()
main(args)