-
Notifications
You must be signed in to change notification settings - Fork 2
/
method1.py
250 lines (222 loc) · 9.78 KB
/
method1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
from subprocess import check_output # check output of shell command
print(check_output(["ls"]).decode("utf8")) # check output of ls command
import pandas as pd
import matplotlib.pyplot as plt
import cv2
import os, glob
drivers = pd.read_csv('driver_imgs_list.csv') # import the test results
train_files = [f for f in glob.glob("imgs/train/*/*.jpg")] # import the training files
test_files = ["imgs/test" + f for f in os.listdir("imgs/test")] # import the test files
print(train_files[:10]) # list the last 10 files of train
print(test_files[:10]) # list the last 10 files of test
plt.rcParams['figure.figsize'] = (12.0, 12.0) # set figure size?
plt.subplots_adjust(wspace=0, hspace=0) # adjust subplot space?
# features on the image to add, need more features for better recognition?
p1 = '/usr/local/share/OpenCV/haarcascades/'
p2 = '/usr/local/share/OpenCV/lbpcascades/'
c_files = []
c_files.append([p1 + 'haarcascade_eye.xml','eye'])
c_files.append([p1 + 'haarcascade_eye_tree_eyeglasses.xml','glasses'])
c_files.append([p1 + 'haarcascade_frontalcatface.xml','frontal'])
c_files.append([p1 + 'haarcascade_frontalcatface_extended.xml','cat ext'])
c_files.append([p1 + 'haarcascade_frontalface_alt.xml','alt'])
c_files.append([p1 + 'haarcascade_frontalface_alt2.xml','alt2'])
c_files.append([p1 + 'haarcascade_frontalface_alt_tree.xml','alt tree'])
c_files.append([p1 + 'haarcascade_frontalface_default.xml','default'])
c_files.append([p1 + 'haarcascade_fullbody.xml','body'])
c_files.append([p1 + 'haarcascade_lefteye_2splits.xml','splits'])
c_files.append([p1 + 'haarcascade_licence_plate_rus_16stages.xml','license'])
c_files.append([p1 + 'haarcascade_lowerbody.xml','lowerbody'])
c_files.append([p1 + 'haarcascade_profileface.xml','profile'])
c_files.append([p1 + 'haarcascade_righteye_2splits.xml','right eye'])
c_files.append([p1 + 'haarcascade_russian_plate_number.xml','russian'])
c_files.append([p1 + 'haarcascade_smile.xml','smile'])
c_files.append([p1 + 'haarcascade_upperbody.xml','upper'])
c_files.append([p2 + 'lbpcascade_frontalcatface.xml','cat frontal'])
c_files.append([p2 + 'lbpcascade_frontalface.xml','lbp frontal'])
c_files.append([p2 + 'lbpcascade_profileface.xml','lbp profile'])
c_files.append([p2 + 'lbpcascade_silverware.xml','silver'])
import random
fi = random.choice(train_files) # find random files in train
print(fi)
im = cv2.imread(fi) # read the random img
plt.imshow(cv2.cvtColor(im, cv2.COLOR_BGR2RGB)); plt.axis('off')
i_ = 0
plt.rcParams['figure.figsize'] = (11.0, 21.0)
plt.subplots_adjust(wspace=0, hspace=0)
for c in c_files:
im2 = im.copy()
gr_im = cv2.cvtColor(im2, cv2.COLOR_BGR2GRAY)
fc = cv2.CascadeClassifier(c[0])
fr = fc.detectMultiScale(gr_im, scaleFactor=1.1, minNeighbors=2, minSize=(20, 20), flags = cv2.CASCADE_SCALE_IMAGE)
if len(fr)>0:
for (x, y, w, h) in fr:
cv2.rectangle(im2, (x, y), (x+w, y+h), (0, 0, 255), 2)
cv2.cvtColor(im2, cv2.COLOR_BGR2RGB)
plt.subplot(7, 3, i_+1).set_title(c[1])
plt.imshow(cv2.cvtColor(im2, cv2.COLOR_BGR2RGB)); plt.axis('off')
i_ += 1
# create the label for each category
lbl = {'c0' : 'safe driving',
'c1' : 'texting - right',
'c2' : 'talking on the phone - right',
'c3' : 'texting - left',
'c4' : 'talking on the phone - left',
'c5' : 'operating the radio',
'c6' : 'drinking',
'c7' : 'reaching behind',
'c8' : 'hair and makeup',
'c9' : 'talking to passenger'}
plt.rcParams['figure.figsize'] = (8.0, 20.0) # why use the specific figure sizes
plt.subplots_adjust(wspace=0, hspace=0)
i_ = 0
for l in lbl:
tf = ["imgs/train/" + l + "/" + f for f in os.listdir("imgs/train/" + l + "/")]
fi = random.choice(tf)
print(fi)
im = cv2.imread(fi)
plt.subplot(5, 2, i_+1).set_title(lbl[l])
plt.imshow(cv2.cvtColor(im, cv2.COLOR_BGR2RGB)); plt.axis('off')
i_ += 1
# real analysis starts here, previous codes are sanity checks
import time; start_time = time.time() # set time
import warnings; warnings.filterwarnings('ignore'); # ignore warnings
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
# image filters?
from PIL import Image
from PIL import ImageFilter
# neural networks?
from sklearn import ensemble
from sklearn.multiclass import OneVsRestClassifier
from sklearn import pipeline
from sklearn.base import BaseEstimator, TransformerMixin # used this package to find stitch feature together?
from sklearn.pipeline import FeatureUnion
from sklearn.decomposition import MiniBatchDictionaryLearning
from sklearn.feature_extraction.image import extract_patches_2d
#from sklearn.feature_extraction.image import img_to_graph
#from sklearn.metrics import f1_score
from sklearn import preprocessing
import multiprocessing
import random; random.seed(2016);
import cv2
import os
import re
train_drivers = pd.read_csv('driver_imgs_list.csv') # read the training records
train_drivers["path"] = "imgs/train/" + train_drivers.classname + "/" + train_drivers.img # add a new column with a dir path of the images
X_train = train_drivers[["path","img"]]
y_train = train_drivers['classname'].str.get_dummies()
id_test = os.listdir("imgs/test/")
X_test = ["imgs/test/" + f for f in id_test]
print("full set:",len(X_train), len(y_train), len(train_drivers), len(X_test), len(id_test))
'''
#remove limit for outside kaggle run - every 1000th row to sample image categories
train_drivers = train_drivers.iloc[::1000, :]
train_drivers = train_drivers.reset_index(drop=True)
X_train = X_train.iloc[::1000, :]
X_train = X_train.reset_index(drop=True)
y_train = y_train.iloc[::1000, :]
y_train = y_train.reset_index(drop=True)
id_test = id_test[::1000]
X_test = X_test[::1000]
#end limit
'''
print("limited:", len(X_train), len(y_train), len(train_drivers), len(X_test), len(id_test))
print("Start Feature Extraction: ", round(((time.time() - start_time)/60),2))
class cust_img_features(BaseEstimator, TransformerMixin):
def fit(self, x, y=None):
return self
def transform(self, img_features):
d_col_drops=['photo_id','tt','subject','classname','path']
img_features = img_features.drop(d_col_drops,axis=1).values
return img_features
def image_features(path, tt, photo_id):
#to do - add more features [OpenCV haarcascade / placement stats / counts] [image filters edges, color isolations, closing kernels, blob, etc.] [Add differnt image size patches, patch stats]
s=[tt, photo_id]
im = Image.open(path)
xheight, xwidth = [20,20]
im = im.resize((xheight, xwidth), Image.ANTIALIAS)
im = im.convert('1') #binarize
im_data = list(im.getdata())
im_data = np.array([r if r == 0 else 1 for r in im_data]).reshape((20, 20))
patches = extract_patches_2d(im_data, (4, 4)) # possible to increase pathces for better analysis?
#print(patches.shape)
for p in patches:
p1 = re.sub('[\[\]\n ]', '', np.array_str(p))
s.append(float(p1[:8] + "." + p1[8:]))
f = open("data.csv","a")
f.write((',').join(map(str, s)) + '\n')
f.close()
return
f = open("data.csv","w");
col = ['tt', 'photo_id']
for i in range(289):
col.append("patch"+str(i))
f.write((',').join(map(str,col)) + '\n')
f.close()
# multithread processing
if __name__ == '__main__':
j = []
cpu = multiprocessing.cpu_count(); #print (cpu);
for s_ in range(0,len(X_train),cpu): #train
for i in range(cpu):
i_=s_+i
if (i_)<len(X_train):
if i_ % 10000 == 0: # print fore very 10,000 finished
print("train ", i_)
filename = X_train.path[i_]
p = multiprocessing.Process(target=image_features, args=(filename,'train', X_train.img[i_],))
j.append(p)
p.start()
j = []
for s_ in range(0,len(X_test),cpu): #test
for i in range(cpu):
i_=s_+i
if (i_)<len(X_test):
if i_ % 10000 == 0:
print("test ", i_)
filename = X_test[i_]
p = multiprocessing.Process(target=image_features, args=(filename,'test', id_test[i_],))
j.append(p)
p.start()
while len(j) > 0: #end all jobs
j = [x for x in j if x.is_alive()]
time.sleep(1)
print("Start Training/Predictions: ", round(((time.time() - start_time)/60),2))
df_all = pd.read_csv('data.csv', index_col=None)
df_all = df_all.reset_index(drop=True)
train_drivers.columns = ['subject','classname','photo_id','path']
df_all = pd.merge(df_all, train_drivers, how='left', on='photo_id')
df_all = df_all.reset_index(drop=True)
X_train = df_all[df_all['tt'] == 'train']
X_train = X_train.reset_index(drop=True)
y_train = X_train['classname'].str.get_dummies()
X_test = df_all[df_all['tt'] == 'test']
X_test.fillna(0, inplace=True)
X_test = X_test.reset_index(drop=True)
id_test = X_test["photo_id"].values
# used random forest to model featuers
rfr = ensemble.RandomForestClassifier(random_state=2016, n_jobs=-1)
ovr = OneVsRestClassifier(rfr, n_jobs=-1)
# join the features?
clf = pipeline.Pipeline([
('union', FeatureUnion(
transformer_list = [
('cst', cust_img_features()),
],
transformer_weights = {
'cst': 1.0,
},
n_jobs = -1
)),
('ovr', ovr)])
# use the joined features to train?
model = clf.fit(X_train, y_train)
y_pred = model.predict_proba(X_test) # prediction probability using model
df = pd.concat((pd.DataFrame(id_test), pd.DataFrame(y_pred)), axis=1)
# output results
df.columns = ['img','c0','c1','c2','c3','c4','c5','c6','c7','c8','c9']
df = df.replace(0.0, 0.1)
df.to_csv('submission.csv',index=False)
print("Ready to submit: ", round(((time.time() - start_time)/60),2))