-
Notifications
You must be signed in to change notification settings - Fork 399
/
Copy pathrun_mv_prediction.py
195 lines (142 loc) · 6.38 KB
/
run_mv_prediction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
import os
from typing import Dict, Optional, Tuple, List
from PIL import Image
import cv2
import numpy as np
from dataclasses import dataclass
from collections import defaultdict
import torch
import torch.utils.checkpoint
from mv_diffusion_30.models.unet_mv2d_condition import UNetMV2DConditionModel
from mv_diffusion_30.data.single_image_dataset import SingleImageDataset as MVDiffusionDataset
from mv_diffusion_30.pipelines.pipeline_mvdiffusion_image import MVDiffusionImagePipeline
from einops import rearrange
import rembg
from torchvision.utils import make_grid, save_image
import torchvision.transforms as transforms
weight_dtype = torch.half
VIEWS = ['front', 'front_right', 'right', 'back', 'left', 'front_left']
to_pil = transforms.ToPILImage()
@dataclass
class TestConfig:
pretrained_model_name_or_path: str
pretrained_unet_path: Optional[str]
revision: Optional[str]
validation_batch_size: int
dataloader_num_workers: int
local_rank: int
pipe_kwargs: Dict
pipe_validation_kwargs: Dict
unet_from_pretrained_kwargs: Dict
validation_guidance_scales: List[float]
validation_grid_nrow: int
camera_embedding_lr_mult: float
num_views: int
camera_embedding_type: str
pred_type: str # joint, or ablation
load_task: bool
def save_image(tensor, fp):
ndarr = tensor.mul(255).add_(0.5).clamp_(0, 255).permute(1, 2, 0).to("cpu", torch.uint8).numpy()
# pdb.set_trace()
im = Image.fromarray(ndarr)
im.save(fp)
return ndarr
def save_depth_numpy(depth, fp, alpha):
depth = depth.mul(0.4).mul(65535.).add_(0.5).to("cpu", torch.float32).numpy().mean(0)
print(depth.min(), depth.max())
depth[alpha < 128] = 0
depth = depth.astype(np.uint16)
kernel = np.ones((3, 3), np.uint8) # kernel for erode
# erode
depth = cv2.erode(depth, kernel, iterations=1)
im = Image.fromarray(depth)
im.save(fp)
def save_image_numpy(ndarr, fp):
im = Image.fromarray(ndarr)
im.save(fp)
def load_wonder3d_pipeline(cfg):
if cfg.pretrained_unet_path:
print("load pre-trained unet from ", cfg.pretrained_unet_path)
unet = UNetMV2DConditionModel.from_pretrained(cfg.pretrained_unet_path, revision=cfg.revision,
**cfg.unet_from_pretrained_kwargs)
pipeline = MVDiffusionImagePipeline.from_pretrained(
cfg.pretrained_model_name_or_path,
torch_dtype=weight_dtype,
pred_type=cfg.pred_type,
safety_checker=None,
unet=unet
)
if torch.cuda.is_available():
pipeline.to('cuda:0')
return pipeline
def pred_multiview_joint(image, pipeline, seed=42, crop_size=192, camera_type='ortho', cfg=None, case_name='img', output_path='outputs'):
validation_dataset = MVDiffusionDataset(
single_image=image,
num_views=6,
bg_color='white',
img_wh=[256, 256],
crop_size=crop_size,
cam_types=[camera_type],
load_cam_type=True
)
validation_dataloader = torch.utils.data.DataLoader(
validation_dataset, batch_size=1, shuffle=False, num_workers=0
)
pipeline.set_progress_bar_config(disable=True)
generator = torch.Generator(device=pipeline.device).manual_seed(seed)
images_cond, normals_pred, images_pred = [], defaultdict(list), defaultdict(list)
batch = next(iter(validation_dataloader))
# repeat (2B, Nv, 3, H, W)
imgs_in = torch.cat([batch['imgs_in']] * 2, dim=0)
filename = batch['filename']
# (2B, Nv, Nce)
camera_embeddings = torch.cat([batch['camera_embeddings']] * 2, dim=0)
task_embeddings = torch.cat([batch['normal_task_embeddings'], batch['color_task_embeddings']], dim=0)
camera_embeddings = torch.cat([camera_embeddings, task_embeddings], dim=-1)
# (B*Nv, 3, H, W)
imgs_in = rearrange(imgs_in, "B Nv C H W -> (B Nv) C H W").to(weight_dtype)
# (B*Nv, Nce)
camera_embeddings = rearrange(camera_embeddings, "B Nv Nce -> (B Nv) Nce").to(weight_dtype)
images_cond.append(imgs_in)
num_views = len(VIEWS)
with torch.autocast("cuda"):
# B*Nv images
for guidance_scale in cfg.validation_guidance_scales:
out = pipeline(
imgs_in, camera_embeddings, generator=generator, guidance_scale=guidance_scale,
output_type='pt', num_images_per_prompt=1, **cfg.pipe_validation_kwargs
).images
bsz = out.shape[0] // 2
normals_pred = out[:bsz]
images_pred = out[bsz:]
color_pred_grid = make_grid(images_pred, nrow=6, padding=0, value_range=(0, 1))
normal_pred_grid = make_grid(normals_pred, nrow=6, padding=0, value_range=(0, 1))
rm_normals = []
colors = []
for i in range(bsz // num_views):
scene = os.path.basename(case_name.split('.')[0])
scene_dir = os.path.join(output_path, scene, 'mv', batch['cam_type'][0])
normal_dir = os.path.join(scene_dir, "normals")
color_dir = os.path.join(scene_dir, "colors")
masked_colors_dir = os.path.join(scene_dir, "masked_colors")
os.makedirs(normal_dir, exist_ok=True)
os.makedirs(masked_colors_dir, exist_ok=True)
os.makedirs(color_dir, exist_ok=True)
print(scene, batch['cam_type'], scene_dir)
rembg_session = rembg.new_session()
for j in range(num_views):
view = VIEWS[j]
idx = i * num_views + j
normal = normals_pred[idx]
color = images_pred[idx]
normal_filename = f"normals_000_{view}.png"
rgb_filename = f"rgb_000_{view}.png"
normal = save_image(normal, os.path.join(normal_dir, normal_filename))
color = save_image(color, os.path.join(color_dir, rgb_filename))
rm_normal = rembg.remove(normal, alpha_matting=True, session=rembg_session)
rm_normals.append(Image.fromarray(rm_normal))
colors.append(to_pil(color))
save_image_numpy(rm_normal, os.path.join(scene_dir, normal_filename))
save_image(color_pred_grid, os.path.join(scene_dir, f'color_grid_img.png'))
save_image(normal_pred_grid, os.path.join(scene_dir, f'normal_grid_img.png'))
return rm_normals, colors