-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathutil.py
217 lines (183 loc) · 8.37 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
import json
import nltk
import numpy as np
import os
import torch
import yaml
from collections import Counter
from torch.autograd import Variable
from tqdm import tqdm
import argparse
def get_config(config_path=None):
if not config_path:
parser = argparse.ArgumentParser()
# datasets
parser.add_argument('--name', default='webqsp', type=str)
parser.add_argument('--data_folder', default='datasets/webqsp/kb_03/', type=str)
parser.add_argument('--train_data', default='train.json', type=str)
parser.add_argument('--train_documents', default='documents.json', type=str)
parser.add_argument('--dev_data', default='dev.json', type=str)
parser.add_argument('--dev_documents', default='documents.json', type=str)
parser.add_argument('--test_data', default='test.json', type=str)
parser.add_argument('--test_documents', default='documents.json', type=str)
parser.add_argument('--max_query_word', default=10, type=int)
parser.add_argument('--max_document_word', default=50, type=int)
parser.add_argument('--max_char', default=25, type=int)
parser.add_argument('--max_num_neighbors', default=100, type=int)
parser.add_argument('--max_rel_words', default=8, type=int)
# embeddings
parser.add_argument('--word2id', default='glove_vocab.txt', type=str)
parser.add_argument('--relation2id', default='relations.txt', type=str)
parser.add_argument('--entity2id', default='entities.txt', type=str)
parser.add_argument('--char2id', default='chars.txt', type=str)
parser.add_argument('--word_emb_file', default='glove_word_emb.npy', type=str)
parser.add_argument('--entity_emb_file', default='entity_emb_100d.npy', type=str)
parser.add_argument('--rel_word_ids', default='rel_word_idx.npy', type=str)
# dimensions, layers, dropout
parser.add_argument('--num_layer', default=1, type=int)
parser.add_argument('--entity_dim', default=100, type=int)
parser.add_argument('--word_dim', default=300, type=int)
parser.add_argument('--hidden_drop', default=0.2, type=float)
parser.add_argument('--word_drop', default=0.2, type=float)
# optimization
parser.add_argument('--num_epoch', default=100, type=int)
parser.add_argument('--batch_size', default=8, type=int)
parser.add_argument('--gradient_clip', default=1.0, type=float)
parser.add_argument('--learning_rate', default=0.001, type=float)
parser.add_argument('--seed', default=19940715, type=int)
parser.add_argument('--lr_schedule', action='store_true')
parser.add_argument('--label_smooth', default=0.1, type=float)
parser.add_argument('--fact_drop', default=0, type=float)
# model options
parser.add_argument('--use_doc', action='store_true')
parser.add_argument('--use_inverse_relation', action='store_true')
parser.add_argument('--model_id', default='debug', type=str)
parser.add_argument('--load_model_file', default=None, type=str)
parser.add_argument('--mode', default='train', type=str)
parser.add_argument('--eps', default=0.05, type=float) # threshold for f1
args = parser.parse_args()
if args.name == 'webqsp':
args.type_rels = ['<fb:food.dish.type_of_dish1>', '<fb:film.performance.special_performance_type>', '<fb:geography.mountain.mountain_type>', '<fb:base.aareas.schema.administrative_area.administrative_area_type>', '<fb:base.qualia.disability.type_of_disability>', '<fb:common.topic.notable_types>', '<fb:base.events.event_feed.type_of_event>', '<fb:base.disaster2.injury.type_of_event>', '<fb:religion.religion.types_of_places_of_worship>', '<fb:tv.tv_regular_personal_appearance.appearance_type>']
else:
args.type_rels = []
config = vars(args)
config['to_save_model'] = True # always save model
config['save_model_file'] = 'model/' + config['name'] + '/best_{}.pt'.format(config['model_id'])
config['pred_file'] = 'results/' + config['name'] + '/best_{}.pred'.format(config['model_id'])
else:
with open(config_path, "r") as setting:
config = yaml.load(setting)
print('-'* 10 + 'Experiment Config' + '-' * 10)
for k, v in config.items():
print(k + ': ', v)
print('-'* 10 + 'Experiment Config' + '-' * 10 + '\n')
return config
def use_cuda(var):
if torch.cuda.is_available():
return var.cuda()
else:
return var
def save_model(the_model, path):
if os.path.exists(path):
path = path + '_copy'
print("saving model to ...", path)
torch.save(the_model, path)
def load_model(path):
if not os.path.exists(path):
assert False, 'cannot find model: ' + path
print("loading model from ...", path)
return torch.load(path)
def load_dict(filename):
word2id = dict()
with open(filename) as f_in:
for line in f_in:
word = line.strip()
word2id[word] = len(word2id)
return word2id
def load_documents(document_file):
print('loading document from', document_file)
documents = dict()
with open(document_file) as f_in:
for line in tqdm(list(f_in)):
passage = json.loads(line)
# tokenize document
document_token = nltk.word_tokenize(passage['document']['text'])
if 'title' in passage:
title_token = nltk.word_tokenize(passage['title']['text'])
passage['tokens'] = title_token + ['|'] + document_token
# passage['tokens'] = title_token
else:
passage['tokens'] = document_token
documents[int(passage['documentId'])] = passage
return documents
def cal_accuracy(pred, answer_dist):
"""
pred: batch_size
answer_dist: batch_size, max_local_entity
"""
num_correct = 0.0
num_answerable = 0.0
for i, l in enumerate(pred):
num_correct += (answer_dist[i, l] != 0)
for dist in answer_dist:
if np.sum(dist) != 0:
num_answerable += 1
return num_correct / len(pred), num_answerable / len(pred)
def char_vocab(word2id, data_path):
# build char embeddings
char_counter = Counter()
max_char = 0
with open(word2id) as f:
for word in f:
word = word.strip()
max_char = max(max_char, len(word))
for char in word:
char_counter[char] += 1
char2id = {c: idx for idx, c in enumerate(char_counter.keys(), 1)}
char2id['__unk__'] = 0
id2char = {id_:c for c, id_ in char2id.items()}
vocab_size = len(char2id)
char_vocabs = []
for _ in range(vocab_size):
char_vocabs.append(id2char[_])
with open(data_path, 'w') as g:
g.write('\n'.join(char_vocabs))
print(max_char)
class LeftMMFixed(torch.autograd.Function):
"""
Implementation of matrix multiplication of a Sparse Variable with a Dense Variable, returning a Dense one.
This is added because there's no autograd for sparse yet. No gradient computed on the sparse weights.
"""
def __init__(self):
super(LeftMMFixed, self).__init__()
self.sparse_weights = None
def forward(self, sparse_weights, x):
if self.sparse_weights is None:
self.sparse_weights = sparse_weights
return torch.mm(self.sparse_weights, x)
def backward(self, grad_output):
sparse_weights = self.sparse_weights
return None, torch.mm(sparse_weights.t(), grad_output)
def sparse_bmm(X, Y):
"""Batch multiply X and Y where X is sparse, Y is dense.
Args:
X: Sparse tensor of size BxMxN. Consists of two tensors,
I:3xZ indices, and V:1xZ values.
Y: Dense tensor of size BxNxK.
Returns:
batched-matmul(X, Y): BxMxK
"""
I = X._indices()
V = X._values()
B, M, N = X.size()
_, _, K = Y.size()
Z = I.size()[1]
lookup = Y[I[0, :], I[2, :], :]
X_I = torch.stack((I[0, :] * M + I[1, :], use_cuda(torch.arange(Z).type(torch.LongTensor))), 0)
S = use_cuda(Variable(torch.cuda.sparse.FloatTensor(X_I, V, torch.Size([B * M, Z])), requires_grad=False))
prod_op = LeftMMFixed()
prod = prod_op(S, lookup)
return prod.view(B, M, K)
if __name__ == "__main__":
# load_documents('datasets/wikimovie/full_doc/documents.json')
char_vocab('datasets/webqsp/kb_05/vocab.txt', 'datasets/webqsp/kb_05/chars.txt')