forked from onnx/onnx
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathir.h
1209 lines (1075 loc) · 33.2 KB
/
ir.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// ATTENTION: The code in this file is highly EXPERIMENTAL.
// Adventurous users should note that the APIs will probably change.
#pragma once
#include <atomic>
#include <algorithm>
#include <cstdint>
#include <functional>
#include <iostream>
#include <memory>
#include <sstream>
#include <stdint.h>
#include <string>
#include <unordered_set>
#include <vector>
#include "onnx/string_utils.h"
#include "onnx/common/array_ref.h"
#include "onnx/common/assertions.h"
#include "onnx/common/interned_strings.h"
#include "onnx/common/graph_node_list.h"
#include "onnx/common/tensor.h"
#define ONNX_DISALLOW_COPY_AND_ASSIGN(TypeName) \
TypeName(const TypeName&) = delete; \
void operator=(const TypeName&) = delete
namespace ONNX_NAMESPACE {
// Graph represents one "function" of computation.
// It uses a simple ownership model where the graph owns all the nodes inside it.
// All references inside the graph are raw pointers.
// Destroying the Graph will invalidate any pointers to nodes in the graph.
struct Graph;
// Node is the base class of the IR graph. It represents one computation
// and dependencies on a list of Values. The "prim-ops", so to speak.
struct Node;
// A Value represents an input or output to node that is either a
// Tensor or an opaque Handle object, as determined by type().
struct Value;
class ResourceGuard final {
std::function<void()> destructor_;
bool released_;
public:
ResourceGuard(std::function<void()> destructor)
: destructor_(std::move(destructor))
, released_(false) {}
~ResourceGuard() {
if (!released_) destructor_();
}
void release() {
released_ = true;
}
};
struct Dimension final {
Dimension(std::string param)
: is_int(false), dim(-1), param(std::move(param)) {
}
Dimension(int64_t dim) : is_int(true), dim(dim) {}
bool is_int;
int64_t dim;
std::string param;
};
enum class AttributeKind : uint8_t {
// float, float list, int, int list, string, string list,
// tensor, tensor list, subgraph, subgraph list
f, fs, i, is, s, ss, t, ts, g, gs
};
static inline const char * toString(AttributeKind kind) {
static constexpr const char* names[] = {"f","fs", "i", "is", "s", "ss", "t", "ts", "g", "gs"};
ONNX_ASSERT(size_t(kind) < sizeof(names) / sizeof(AttributeKind));
return names[int(kind)];
}
struct AttributeValue {
AttributeValue(Symbol name)
: name(name) {}
using Ptr = std::unique_ptr<AttributeValue>;
Symbol name;
virtual AttributeKind kind() const = 0;
virtual Ptr clone() const = 0;
virtual ~AttributeValue() = default;
};
template<typename T, AttributeKind Kind>
struct ScalarAttributeValue final : public AttributeValue {
using ConstructorType = const T &;
using ValueType = T;
ScalarAttributeValue(Symbol name, ConstructorType value_)
: AttributeValue(name), value_(value_) {}
ValueType & value() {
return value_;
}
virtual Ptr clone() const override {
return Ptr(new ScalarAttributeValue(name, value_));
}
virtual AttributeKind kind() const override { return Kind; }
private:
ValueType value_;
};
template<typename T, AttributeKind Kind>
struct VectorAttributeValue final : public AttributeValue {
using ConstructorType = const std::vector<T> &&;
using ValueType = std::vector<T>;
VectorAttributeValue(Symbol name, ConstructorType value_)
: AttributeValue(name), value_(std::move(value_)) {}
ValueType & value() {
return value_;
}
virtual AttributeKind kind() const override { return Kind; }
virtual std::unique_ptr<AttributeValue> clone() const override {
auto copy = value_;
return Ptr(new VectorAttributeValue(name, std::move(copy)));
}
private:
ValueType value_;
};
using FloatAttr = ScalarAttributeValue<double,AttributeKind::f>;
using FloatsAttr = VectorAttributeValue<double,AttributeKind::fs>;
using IntAttr = ScalarAttributeValue<int64_t,AttributeKind::i>;
using IntsAttr = VectorAttributeValue<int64_t,AttributeKind::is>;
using StringAttr = ScalarAttributeValue<std::string,AttributeKind::s>;
using StringsAttr = VectorAttributeValue<std::string,AttributeKind::ss>;
using TensorAttr = ScalarAttributeValue<Tensor,AttributeKind::t>;
using TensorsAttr = VectorAttributeValue<Tensor,AttributeKind::ts>;
using GraphAttr = ScalarAttributeValue<std::shared_ptr<Graph>,AttributeKind::g>;
using GraphsAttr = VectorAttributeValue<std::shared_ptr<Graph>,AttributeKind::gs>;
// CRTP so that Node which inherits Attributes can be return for
// method chaining e.g:
// Node * n = g->create(kSelect)->set_i(kOffset,3)->set_f(kValue,3.5);
// we return Derived* pointers because Nodes are normally held as pointers.
template<typename Derived>
struct Attributes {
Attributes() {}
void copyAttributes(const Attributes & rhs) {
values_.clear();
values_.reserve(rhs.values_.size());
for(auto & i : rhs.values_) {
values_.push_back(i->clone());
}
}
bool hasAttribute(Symbol name) const {
return find(name,false) != values_.end();
}
AttributeKind kindOf(Symbol name) const {
return (*find(name,true))->kind();
}
Derived* removeAttribute(Symbol name) {
values_.erase(find(name,true));
return This();
}
bool hasAttributes() const {
return values_.size() > 0;
}
// The names are returned in order, since name actually is the index.
std::vector<Symbol> attributeNames() const {
std::vector<Symbol> names;
names.reserve(values_.size());
for(auto & a : values_)
names.push_back(a->name);
return names;
}
#define CREATE_ACCESSOR(Kind, method) \
Derived* method##_(Symbol name, Kind##Attr::ConstructorType v) { \
return set<Kind##Attr>(name,std::forward<Kind##Attr::ConstructorType>(v)); \
} \
const Kind##Attr::ValueType& method(Symbol name) const { \
return get<Kind##Attr>(name); \
}
CREATE_ACCESSOR(Float,f)
CREATE_ACCESSOR(Floats,fs)
CREATE_ACCESSOR(String,s)
CREATE_ACCESSOR(Strings,ss)
CREATE_ACCESSOR(Int,i)
CREATE_ACCESSOR(Ints,is)
CREATE_ACCESSOR(Tensor,t)
CREATE_ACCESSOR(Tensors,ts)
CREATE_ACCESSOR(Graph,g)
CREATE_ACCESSOR(Graphs,gs)
#undef CREATE_ACCESSOR
private:
Derived* This() {
return static_cast<Derived*>(this);
}
template<typename T>
Derived* set(Symbol name, typename T::ConstructorType v) {
auto it = find(name, false);
auto nv = AVPtr(new T(name, std::forward<typename T::ConstructorType>(v)));
if(it == values_.end()) {
values_.push_back(std::move(nv));
} else {
*it = std::move(nv);
}
return This();
}
template<typename T>
typename T::ValueType & get(Symbol name) const {
auto it = find(name, true);
T* child = static_cast<T*>(it->get());
return child->value();
}
using AVPtr = AttributeValue::Ptr;
// NB: For determinism, we use a vector rather than a hash map. This does
// mean that lookups are O(n), so you shouldn't use Attributes to store
// a big pile of messages.
std::vector<AVPtr> values_;
using iterator = std::vector<AVPtr>::iterator;
iterator find(Symbol name, bool required) {
auto it = std::find_if(values_.begin(), values_.end(),[&](const AVPtr & v) {
return v->name == name;
});
ONNX_ASSERT(!required || it != values_.end());
return it;
}
using const_iterator = std::vector<AVPtr>::const_iterator;
const_iterator find(Symbol name, bool required) const {
auto it = std::find_if(values_.begin(), values_.end(),[&](const AVPtr & v) {
return v->name == name;
});
ONNX_ASSERTM(!required || it != values_.end(),
"%s:%u: %s: required undefined attribute '%s'", __FILE__, __LINE__, __func__, name.toString());
return it;
}
};
// Each use is represented by this type, see Node::uses()
// 'user' is the consumer of the value, offset is the index into
// 'user's input this where the produces will be found.
struct Use final {
Use(Node * user, size_t offset)
: user(user), offset(offset) {}
Node * user;
size_t offset;
};
static inline bool operator==(const Use & a, const Use & b) {
return a.user == b.user && a.offset == b.offset;
}
// the list types are intentionally simple, but we type-def
// them here so if we need to change them, refactoring will be easier
using node_list = std::vector<Node*>;
using value_list = std::vector<Value*>;
using use_list = std::vector<Use>;
using NodeKind = Symbol;
struct Value final {
ONNX_DISALLOW_COPY_AND_ASSIGN(Value);
Value(Node * node_, size_t offset_);
private:
friend struct Node;
friend struct Graph;
Node * node_;
size_t offset_;
size_t unique_ = 0; // unique id
size_t stage_ = 0; // 0-forward, 1-backward, 2-double-backward,...
use_list uses_;
bool has_unique_name_;
std::string unique_name_;
ONNX_NAMESPACE::TensorProto_DataType elem_type_;
bool has_sizes_;
std::vector<Dimension> sizes_;
public:
Value* setElemType(ONNX_NAMESPACE::TensorProto_DataType elem_type) {
elem_type_ = elem_type;
return this;
}
ONNX_NAMESPACE::TensorProto_DataType elemType() const {
return elem_type_;
}
bool has_sizes() const { return has_sizes_; }
Value* setSizes(std::vector<Dimension> sizes) {
has_sizes_ = true;
sizes_ = std::move(sizes);
return this;
}
const std::vector<Dimension>& sizes() const {
return sizes_;
}
size_t unique() const {
return unique_;
}
bool has_unique_name() const {
return has_unique_name_;
}
std::string uniqueName() const {
if(has_unique_name())
return unique_name_;
return ONNX_NAMESPACE::to_string(unique());
}
Value* setUniqueName(std::string name) {
has_unique_name_ = true;
unique_name_ = std::move(name);
return this;
}
Value* setStage(size_t s) {
stage_ = s;
return this;
}
size_t stage() const {
return stage_;
}
Node* node() {
return node_;
}
size_t offset() const {
return offset_;
}
const Node * node() const {
return node_;
}
Graph * owningGraph();
const Graph * owningGraph() const;
// TODO: make this more const correct
const use_list & uses() const {
return uses_;
}
// Replaces all uses of this node with 'newValue'.
//
// Given: %3 = f(%1, %2)
// %4 = g(%3)
// %5 = h(%3, %3)
// Execute: %3.replaceAllUsesWith(%6)
// Result: %3 = f(%1, %2)
// %4 = g(%6)
// %5 = h(%6, %6)
void replaceAllUsesWith(Value * newValue);
Value* copyMetadata(Value * from) {
setElemType(from->elemType());
setSizes(from->sizes());
if (from->has_unique_name()) {
setUniqueName(from->uniqueName());
}
return this;
}
};
struct Node : public Attributes<Node> {
ONNX_DISALLOW_COPY_AND_ASSIGN(Node);
friend struct Graph;
friend struct Value;
friend graph_node_list;
friend const_graph_node_list;
friend graph_node_list_iterator;
friend const_graph_node_list_iterator;
private:
// each node but Return/Param
// is associated with exactly one place in the node list...
// of the graph_
// this circular is a doubly-linked list, the Return node is used as the sentinel for the beginning and end of the list
// such that the list never has null pointers
// next_in_graph[0] is next pointer
// next_in_graph[1] is prev pointer
// using an array to allow the same iterator class for forward and reverse node lists
// This list represents a topological sort
Node* next_in_graph[2] = { nullptr, nullptr };
Node* & next() { return next_in_graph[kNextDirection]; }
Node* & prev() { return next_in_graph[kPrevDirection]; }
Node* const & next() const { return next_in_graph[kNextDirection]; }
Node* const & prev() const { return next_in_graph[kPrevDirection]; }
const NodeKind kind_;
std::vector<Value*> inputs_;
std::vector<Value*> outputs_;
Graph* graph_;
size_t stage_;
bool has_name_;
std::string name_;
bool has_domain_;
std::string domain_;
bool has_doc_string_;
std::string doc_string_;
protected:
Node(Graph * graph_, NodeKind kind_); //defined after graph
public:
bool has_name() {
return has_name_;
}
const std::string& name() const {
return name_;
}
void setName(std::string name) {
has_name_ = true;
name_ = std::move(name);
}
bool has_domain() {
return has_domain_;
}
const std::string& domain() const {
return domain_;
}
void setDomain(std::string domain) {
has_domain_ = true;
domain_ = std::move(domain);
}
bool has_doc_string() const {
return has_doc_string_;
}
const std::string& docString() {
return doc_string_;
}
void setDocString(std::string doc_string) {
has_doc_string_ = true;
doc_string_ = std::move(doc_string);
}
NodeKind kind() const {
return kind_;
}
Graph * owningGraph() {
return graph_;
}
const Graph * owningGraph() const {
return graph_;
}
size_t stage() const {
return stage_;
}
Node* setStage(size_t s) {
stage_ = s;
return this;
}
// NB: This returns an ArrayRef; that means that it will
// get invalidated if you resize inputs (e.g., using addInput)
// We can't return a std::vector<Node*>& because there's no
// way to soundly cast to std::vector<const Node*> (an insane
// implementation of std::vector could make this representationally
// different.)
ArrayRef<Value*> inputs() {
return inputs_;
}
ArrayRef<const Value*> inputs() const {
// Vectors are not convertible in const-ness of elements, but
// raw pointers are.
return {inputs_.data(), inputs_.size()};
}
// NB: This returns an ArrayRef; that means that it will
// get invalidated if you resize inputs (e.g., using addInput)
// We can't return a std::vector<Node*>& because there's no
// way to soundly cast to std::vector<const Node*> (an insane
// implementation of std::vector could make this representationally
// different.)
ArrayRef<Value*> outputs() {
return outputs_;
}
ArrayRef<const Value*> outputs() const {
// Vectors are not convertible in const-ness of elements, but
// raw pointers are.
return {outputs_.data(), outputs_.size()};
}
bool hasUses() const {
for(auto o : outputs()) {
if(o->uses().size() > 0)
return true;
}
return false;
}
void replaceAllUsesWith(Node * n) {
ONNX_ASSERT(outputs().size() == n->outputs().size());
size_t nOutputs = outputs().size();
for(size_t i = 0; i < nOutputs; i++) {
outputs()[i]->replaceAllUsesWith(n->outputs()[i]);
}
}
// lots of things like chunk have a single input or single output, so we have a
// helper to make accessing it easier
Value * input() {
ONNX_ASSERT(inputs_.size() == 1);
return inputs_.at(0);
}
Value * output() {
ONNX_ASSERT(outputs_.size() == 1);
return outputs_.at(0);
}
const Value * input() const {
ONNX_ASSERT(inputs_.size() == 1);
return inputs_.at(0);
}
// Access a particular input. This is a checked index.
Value * input(size_t i) {
return inputs_.at(i);
}
const Value * input(size_t i) const {
return inputs_.at(i);
}
// Graphs
// Note [Topological invariant]
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// We always maintain an up-to-date topological ordering of all nodes via
// the next()/prev() links. All transformations to graphs must preserve
// this topological ordering: for example, it is only valid to 'addInput'
// with an input which is topologically before the current node.
//
// Usually, it is obvious whether or not topological order is maintained;
// for example, if you are adding nodes to the end of the topsort, it's
// impossible for them to refer to inputs that are not in the topsort.
// If it is not obvious, please comment accordingly.
// Add 'node' as an input to 'this' at the end of existing
// arguments. Returns the added node for ease of chaining.
//
// Given: %3 = f(%1, %2)
// Execute: %3.addInput(%4)
// Result: %3 = f(%1, %2, %4)
Value* addInput(Value * node) {
ONNX_ASSERT(graph_ == node->owningGraph());
node->uses_.emplace_back(this, inputs_.size());
inputs_.push_back(node);
return node;
}
// Replace the input of 'this' at position 'i' with
// 'newValue', returning the old node.
//
// Given: %3 = f(%1, %2)
// Execute: %3.replaceInput(1, %4)
// Result: %3 = f(%1, %4)
Value * replaceInput(size_t i, Value * newValue) {
ONNX_ASSERT(newValue->owningGraph() == graph_);
Value * old = dropInput(i);
inputs_[i] = newValue;
newValue->uses_.emplace_back(this, i);
return old;
}
// Replace all occurrences of 'from' in the inputs of this
// node with 'to'. Corresponds to llvm's replaceUsesOfWith.
//
// Given: %3 = f(%1, %2, %1)
// Execute: %3.replaceInputWith(%1, %4)
// Result: %3 = f(%4, %2, %4)
void replaceInputWith(Value * from, Value * to) {
ONNX_ASSERT(from->owningGraph() == graph_);
ONNX_ASSERT(to->owningGraph() == graph_);
size_t i = 0;
for(auto input : inputs()) {
if(input == from)
replaceInput(i, to);
i++;
}
}
Value* addOutput() {
outputs_.push_back(new Value(this, outputs_.size()));
return outputs_.back();
}
void eraseOutput(size_t i);
// Insert unattached 'this' node after 'n' in the topological order.
// Returns this (for chaining).
//
// Given: %3 = f(%1, %2)
// %4 = g(%3)
// and unattached: %5 = h(%1)
// Execute: %5.insertBefore(%4)
// Result: %3 = f(%1, %2)
// %5 = h(%1)
// %4 = g(%3)
Node* insertBefore(Node * n) {
ONNX_ASSERT(n->inGraphList());
insertAfter(n->prev());
return this;
}
// Insert unattached 'this' node after 'n' in the topological order.
// Returns this (for chaining).
//
// Given: %3 = f(%1, %2)
// %4 = g(%3)
// and unattached: %5 = h(%1)
// Execute: %5.insertAfter(%4)
// Result: %3 = f(%1, %2)
// %4 = g(%3)
// %5 = h(%1)
Node* insertAfter(Node * n) {
ONNX_ASSERT(!inGraphList() && n->inGraphList());
Node * next = n->next();
n->next() = this;
this->prev() = n;
this->next() = next;
next->prev() = this;
return this;
}
// Move 'this' (already in the graph) after 'n' in the topological order.
//
// Given: %2 = f(%1)
// %3 = g(%1)
// Execute: %2.moveAfter(%3)
// Result: %3 = g(%1)
// %2 = f(%1)
//
void moveAfter(Node * n) {
removeFromList();
insertAfter(n);
}
// Move a node 'n' (already in the graph) before 'this' in the topological order.
//
// Given: %2 = f(%1)
// %3 = g(%1)
// Execute: %3.moveBefore(%2)
// Result: %3 = g(%1)
// %2 = f(%1)
void moveBefore(Node * n) {
removeFromList();
insertBefore(n);
}
// Remove the input at 'i' from this node.
//
// WARNING: This is O(n) in the number of inputs, so avoid repeatedly calling
// removeInput.
//
// Given: %3 = f(%1, %2)
// Execute: %3.removeInput(1)
// Result: %3 = f(%1)
void removeInput(size_t i) {
dropInput(i);
// everything after this input shifts left,
// so we need to update their use offsets to match
for(size_t j = i+1; j < inputs_.size(); j++) {
auto it = findUseForInput(j);
it->offset--;
}
inputs_.erase(inputs_.begin() + i);
}
// Remove all inputs from a node.
//
// Given: %3 = f(%1, %2)
// Execute: %3.removeAllInputs()
// Result: %3 = f()
void removeAllInputs() {
for(size_t i = 0; i < inputs().size(); ++i)
dropInput(i);
inputs_.clear();
}
// Check whether this node is before node n in the graph.
bool isBefore(Node* n);
// iterators of the node list starting at this node
// useful for resuming a search starting at this node
graph_node_list_iterator iterator();
graph_node_list_iterator reverseIterator();
const_graph_node_list_iterator iterator() const;
const_graph_node_list_iterator reverseIterator() const;
// Remove 'this' from the instruction list and deallocate it.
//
// Invariant: no outputs of 'this' may have any uses.
//
// Given: %2 = f(%1)
// %3 = g(%1)
// Execute: %2.destroy()
// Result: %3 = g(%1)
void destroy();
// Dynamically cast this node to the subclass indicated by the
// template variable, returning nullptr if the cast is invalid..
//
// Example usage: if(auto s = n.cast<Select>()) { ... }
//
// TODO: Make this const correct
template<typename T>
T* cast() {
if(T::Kind == kind())
return static_cast<T*>(this);
return nullptr;
}
template<typename T>
T* expect() {
ONNX_ASSERTM(T::Kind == kind(), "expected a %s but found a %s", T::Kind.toString(), kind().toString());
return static_cast<T*>(this);
}
virtual ~Node() = default;
private:
// Lookup iterator in use list of _input i_ that corresponds to its use of _this_
use_list::iterator findUseForInput(size_t i) {
auto & input_uses = inputs_[i]->uses_;
// O(N) on the use list, but unless we get nodes with +100 uses
// vector traversal still is probably faster than linked list
auto use_it = std::find(input_uses.begin(), input_uses.end(), Use(this, i));
ONNX_ASSERT(use_it != input_uses.end());
return use_it;
}
// remove the use of input i, this sets input i to nullptr, but
// is only used internally to Node before setting it to a new value
// or erasing the entry from the list.
Value* dropInput(size_t i) {
ONNX_ASSERT(i < inputs_.size());
auto input_node = inputs_[i];
auto use_it = findUseForInput(i);
input_node->uses_.erase(use_it);
inputs_[i] = nullptr;
return input_node;
}
bool inGraphList() const {
ONNX_ASSERT(next() != nullptr || prev() == nullptr);
return next() != nullptr;
}
void removeFromList() {
ONNX_ASSERT(inGraphList());
Node * next = this->next();
Node * prev = this->prev();
prev->next() = next;
next->prev() = prev;
this->next() = nullptr;
this->prev() = nullptr;
}
protected:
// subclasses must override
// this function is used by createClone to initialize a new version
// of a node in another graph. It should allocate a new instance of the same
// concrete type as 'this', but in graph 'g' which might be different
// than graph_
virtual Node * allocNewInstance(Graph * g) {
return new Node(g, kind());
}
// create a copy of all properties of Node s into this.
// subclasses should extend if they have additional information to copy.
// 'this' will be allocated with s->allocNewInstance(g) so it should have
// the same concrete type as 's'
//
// NB: This does NOT clone stages. You're expected to set the stage correctly
// if you are going to preserve it.
virtual void cloneFrom(Node * s) {
copyAttributes(*s);
}
};
// A class with the same properties as OperatorSetIdProto, but without protobuf
// overhead, resulting in a simpler and more readable workflow.
class OpSetID final {
private:
std::string domain_;
int64_t version_;
public:
explicit OpSetID(const OperatorSetIdProto& proto)
:domain_(proto.domain()), version_(proto.version()) {}
// Default Domain Constructor
explicit OpSetID(const int64_t version)
:domain_(""), version_(version) {}
explicit OpSetID(const std::string& domain, int64_t version)
:domain_(domain), version_(version) {}
// target must be in the form "<domain>&<version>"
std::string toString() const {
return domain_ + "$" + ONNX_NAMESPACE::to_string(version_);
}
// target must be in the form "<domain>&<version>"
static OpSetID fromString(const std::string& target) {
try {
std::string new_domain = target.substr(0, target.find("$"));
int new_version = ONNX_NAMESPACE::stoi(target.substr(target.find("$") + 1, target.length()).c_str());
return OpSetID(std::move(new_domain), new_version);
} catch (const std::runtime_error& e) {
ONNX_ASSERTM(false, "Error in fromString: %s", e.what());
}
}
const std::string& domain() const {
return domain_;
}
int64_t version() const {
return version_;
}
void incrementVersion(int64_t step) {
version_ += step;
}
void setVersion(int64_t newVal) {
version_ = newVal;
}
};
struct Graph final {
ONNX_DISALLOW_COPY_AND_ASSIGN(Graph);
friend struct Node;
friend struct Value;
private:
// only used to keep track of allocated nodes
// actual representation of Graph is done with
// inputs, outputs, nodes
std::unordered_set<const Node*> all_nodes;
std::unordered_set<const Value*> all_values;
size_t next_unique_;
size_t new_node_stage_;
// holds outputs in a way that can be reflected
// as a Use object
// also used as the beginning/end of the circular node list to avoid
// having corner cases where the list is empty.
Node * const output_;
Node * const input_;
std::vector<Tensor> initializers_;
std::vector<std::string> initializer_names_;
bool has_name_;
std::string name_;
bool has_doc_string_;
std::string doc_string_;
std::vector <OpSetID> opset_versions_;
public:
Graph()
: next_unique_(0)
, new_node_stage_(0)
, output_(initOutput(create(kReturn, 0)))
, input_(create(kParam, 0))
, has_name_(false)
, has_doc_string_(false) {}
bool has_doc_string() {
return has_doc_string_;
}
const std::string& docString() {
return doc_string_;
}
void setDocString(std::string doc_string) {
has_doc_string_ = true;
doc_string_ = std::move(doc_string);
}
void addInitializer(Tensor initializer, std::string name) {
initializers_.push_back(std::move(initializer));
initializer_names_.push_back(std::move(name));
}
void eraseInitializer(std::string name) {
initializers_.erase(
std::remove_if(
initializers_.begin(),
initializers_.end(),
[&name](Tensor& initializer) {
return initializer.name() == name;
}),
initializers_.end());
initializer_names_.erase(
std::remove(
initializer_names_.begin(),
initializer_names_.end(),
name),
initializer_names_.end());
}
void clearInitializers() {
initializers_.clear();
initializer_names_.clear();
}
const std::vector<Tensor>& initializers() {
return initializers_;
}
const std::vector<std::string>& initializer_names() {
return initializer_names_;
}
std::vector<Tensor>::const_iterator getInitializer(const std::string& name) {
for (auto it = initializers_.cbegin(); it != initializers_.cend(); ++it) {
if (name == it->name()) {
return it;
}
}
return initializers_.end();
}
ArrayRef<Value*> inputs() {
return input_->outputs();
}
ArrayRef<const Value*> inputs() const {
const auto & inputs = input_->outputs();
return {inputs.data(), inputs.size()};
}
ArrayRef<Value*> outputs() {
return output_->inputs();
}
ArrayRef<const Value*> outputs() const {
return static_cast<const Node*>(output_)->inputs();
}
graph_node_list nodes() {
return graph_node_list(output_, kNextDirection);
}
const_graph_node_list nodes() const {
return const_graph_node_list(output_, kNextDirection);
}
std::vector<OpSetID>& opset_versions_mutable() {
return opset_versions_;
}
// These invocations of begin() on output of function are OK
// because graph_node_list is non-owning, so it doesn't matter
// if it immediately dies after the invocation.
graph_node_list_iterator begin() {
return nodes().begin();
}
const_graph_node_list_iterator begin() const {
return nodes().begin();
}
graph_node_list_iterator end() {
return nodes().end();
}
const_graph_node_list_iterator end() const {
return nodes().end();
}
graph_node_list_iterator rbegin() {
return nodes().rbegin();
}
const_graph_node_list_iterator rbegin() const {
return nodes().rbegin();
}
graph_node_list_iterator rend() {
return nodes().rend();
}
const_graph_node_list_iterator rend() const {
return nodes().rend();
}
Node * return_node() {
return output_;
}
const Node * return_node() const {
return output_;
}
Value * addInput() {
return input_->addOutput();
}
void eraseInput(size_t i) {
input_->eraseOutput(i);
}
void advanceStage() {
new_node_stage_++;
}
void setStage(size_t new_stage) {
new_node_stage_ = new_stage;
}
size_t stage() const {
return new_node_stage_;
}
ResourceGuard setStageTemporary(size_t s) {