-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathdataset_category.py
74 lines (47 loc) · 1.94 KB
/
dataset_category.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import os
import os.path
import torch.utils.data as data
from PIL import Image
def make_dataset(root, is_train):
if is_train:
img_txt = open(os.path.join(root, 'train_category.txt'))
img_name = []
img_category = []
for img_list in img_txt:
x = img_list.split()
img_name.append([os.path.join(root, x[0]), (os.path.join(root, x[1]))])
img_category.append(x[2])
img_txt.close()
return img_name, img_category
else:
img_txt = open(os.path.join(root, 'val_category.txt'))
img_name = []
img_category = []
for img_list in img_txt:
x = img_list.split()
img_name.append([os.path.join(root, x[0]), (os.path.join(root, x[1]))])
img_category.append(x[2])
img_txt.close()
return img_name, img_category
class ImageFolder(data.Dataset):
def __init__(self, root, joint_transform=None, transform=None, target_transform=None, is_train=True, batch_size=4):
self.root = root
self.imgs, self.imgs_category = make_dataset(root, is_train)
self.joint_transform = joint_transform
self.transform = transform
self.target_transform = target_transform
self.batch_size = batch_size
def __getitem__(self, index):
img_path, gt_path = self.imgs[index % len(self.imgs)]
img = Image.open(img_path).convert('RGB')
target = Image.open(gt_path)
if self.joint_transform is not None:
img, target = self.joint_transform(img, target)
if self.transform is not None:
img = self.transform(img)
if self.target_transform is not None:
target = self.target_transform(target)
img_category = self.imgs_category[index % len(self.imgs)]
return img, target, img_category
def __len__(self):
return len(self.imgs) + self.batch_size - (len(self.imgs) % self.batch_size)