-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathsbert-sts-b.py
234 lines (180 loc) · 7.89 KB
/
sbert-sts-b.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
# -*- coding: utf-8 -*-
# @Date : 2021/1/13
# @Author : mingming.xu
# @Email : [email protected]
# @File : sbert-sts-b.py
"""
data:
[STSbenchmark](http://ixa2.si.ehu.eus/stswiki/index.php/STSbenchmark)
[snli](https://nlp.stanford.edu/projects/snli/)
paper: [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](http://arxiv.org/abs/1908.10084)
"""
import os
import json
from tqdm import tqdm
from scipy.stats import spearmanr
from toolkit4nlp.layers import *
from toolkit4nlp.optimizers import *
from toolkit4nlp.models import *
from toolkit4nlp.optimizers import *
from toolkit4nlp.tokenizers import *
from toolkit4nlp.utils import *
label2id = {'neutral': 0, 'entailment': 1, 'contradiction': 2}
def load_snli_data(filename):
"""加载数据
单条格式:(文本1, 文本2, 标签)
"""
D = []
with open(filename, encoding='utf-8') as f:
for i, line in enumerate(f):
item = json.loads(line)
label = item['gold_label']
s1 = item['sentence1']
s2 = item['sentence2']
if label not in label2id:
continue
label_id = label2id[label]
D.append([s1, s2, label_id])
return D
snli_train = load_snli_data('/home/mingming.xu/datasets/NLP/GLUE/snli_1.0/snli_1.0_train.jsonl')
snli_test = load_snli_data('/home/mingming.xu/datasets/NLP/GLUE/snli_1.0/snli_1.0_test.jsonl')
snli_dev = load_snli_data('/home/mingming.xu/datasets/NLP/GLUE/snli_1.0/snli_1.0_dev.jsonl')
def load_stsb_data(filename):
"""加载数据
单条格式:(文本1, 文本2, 标签)
"""
D = []
with open(filename, encoding='utf-8') as f:
for i, l in enumerate(f):
if i > 0:
l = l.strip().split('\t')
D.append((l[5], l[6], float(l[4])))
return D
stsb_train = load_stsb_data('/home/mingming.xu/datasets/NLP/GLUE/STS-B/sts-train.csv')
stsb_test = load_stsb_data('/home/mingming.xu/datasets/NLP/GLUE/STS-B/sts-test.csv')
stsb_dev = load_stsb_data('/home/mingming.xu/datasets/NLP/GLUE/STS-B/sts-dev.csv')
config_path = '/home/mingming.xu/pretrain/NLP/google_uncased_english_L-12_H-768_A-12/bert_config.json'
checkpoint_path = '/home/mingming.xu/pretrain/NLP/google_uncased_english_L-12_H-768_A-12/bert_model.ckpt'
vocab_path = '/home/mingming.xu/pretrain/NLP/google_uncased_english_L-12_H-768_A-12/vocab.txt'
tokenizer = Tokenizer(vocab_path, do_lower_case=True)
maxlen = 128
batch_size = 16
epochs = 1
lr = 2e-5
class data_generator(DataGenerator):
def __iter__(self, shuffle=False):
token_ids_1, segment_ids_1, token_ids_2, segment_ids_2, labels = [], [], [], [], []
for is_end, item in self.get_sample(shuffle):
sen1, sen2, label = item
tokens_1, segments_1 = tokenizer.encode(sen1, maxlen=maxlen)
tokens_2, segments_2 = tokenizer.encode(sen2, maxlen=maxlen)
token_ids_1.append(tokens_1)
segment_ids_1.append(segments_1)
token_ids_2.append(tokens_2)
segment_ids_2.append(segments_2)
labels.append([label])
if is_end or len(token_ids_1) == self.batch_size:
token_ids_1 = pad_sequences(token_ids_1, maxlen=maxlen)
segment_ids_1 = pad_sequences(segment_ids_1, maxlen=maxlen)
token_ids_2 = pad_sequences(token_ids_2, maxlen=maxlen)
segment_ids_2 = pad_sequences(segment_ids_2, maxlen=maxlen)
labels = pad_sequences(labels)
yield [token_ids_1, segment_ids_1, token_ids_2, segment_ids_2], labels
token_ids_1, segment_ids_1, token_ids_2, segment_ids_2, labels = [], [], [], [], []
train_generator = data_generator(snli_train, batch_size)
valid_generator = data_generator(stsb_train, batch_size)
class GlobalAveragePooling1D(keras.layers.GlobalAveragePooling1D):
"""自定义全局池化,当前是MEAN
"""
def call(self, inputs, mask=None):
if mask is not None:
mask = K.cast(mask, K.floatx())[:, :, None]
return K.sum(inputs * mask, axis=1) / K.sum(mask, axis=1)
else:
return K.mean(inputs, axis=1)
bert = build_transformer_model(config_path=config_path, checkpoint_path=checkpoint_path, prefix='Sen-', name='bert')
token_inputs_1 = Input(shape=(None,), name='x1')
segment_inputs_1 = Input(shape=(None,), name='s1')
token_inputs_2 = Input(shape=(None,), name='x2')
segment_inputs_2 = Input(shape=(None,), name='s2')
output_1 = bert([token_inputs_1, segment_inputs_1])
output_2 = bert([token_inputs_2, segment_inputs_2])
u = GlobalAveragePooling1D(name='pool_1')(inputs=output_1)
v = GlobalAveragePooling1D(name='pool_2')(inputs=output_2)
# u = Lambda(lambda x: x[:,0])(output_1)
# v = Lambda(lambda x: x[:,0])(output_2)
u_v = Lambda(lambda x: x[0] - x[1])([u, v])
x = Concatenate()([u, v, u_v])
x = Dense(3, activation='softmax')(x)
model = Model([token_inputs_1, segment_inputs_1, token_inputs_2, segment_inputs_2], x)
infer_model = Model([token_inputs_1, segment_inputs_1], u, name='encoder')
model.summary()
# infer_model.summary()
def get_sentence_vector(sentences):
token_ids, segment_ids = [], []
for sent in sentences:
tokens, segments = tokenizer.encode(sent, maxlen=maxlen)
token_ids.append(tokens)
segment_ids.append(segments)
token_ids = pad_sequences(token_ids)
segment_ids = pad_sequences(segment_ids)
vec = infer_model.predict([token_ids, segment_ids], verbose=True)
return vec
def cal_sim(data):
# cal cosine sim
sentences_1 = [s[0] for s in data]
sentences_2 = [s[1] for s in data]
vecs_1 = get_sentence_vector(sentences_1)
vecs_2 = get_sentence_vector(sentences_2)
vecs_1 = vecs_1 / (vecs_1 ** 2).sum(axis=1, keepdims=True) ** 0.5
vecs_2 = vecs_2 / (vecs_2 ** 2).sum(axis=1, keepdims=True) ** 0.5
sims = (vecs_1 * vecs_2).sum(axis=1)
return sims
def evaluate(data):
# 计算相关系数
sims = cal_sim(data)
labels = [d[-1] for d in data]
cor = np.corrcoef(sims, labels)[0, 1] # Pearson correlation
spear, _ = spearmanr(sims, labels) # Spearman rank correlation
return cor, spear
Opt = extend_with_weight_decay(Adam)
exclude_from_weight_decay = ['Norm', 'bias']
Opt = extend_with_piecewise_linear_lr(Opt)
para = {
'learning_rate': 2e-5,
'weight_decay_rate': 0.1,
'exclude_from_weight_decay': exclude_from_weight_decay,
'lr_schedule': {int(len(train_generator) * 0.1 * epochs): 1, int(len(train_generator) * epochs): 0},
}
opt = Opt(**para)
model.compile(loss='sparse_categorical_crossentropy', optimizer=opt, metrics=['acc'])
class Evaluator(keras.callbacks.Callback):
def __init__(self, score_type='pearson', eval_steps=1000, save_path='best.weights'):
self.score_type = score_type
self.save_path = save_path
self.best_score = 0.
self.eval_steps = eval_steps
def on_train_batch_end(self, batches, logs=None):
if (batches + 1) % self.eval_steps == 0:
p, s = evaluate(stsb_dev)
if self.score_type == 'pearson':
score = p
else:
score = s
if score > self.best_score:
self.best_score = score
model.save_weights(self.save_path)
print('steps is: {}, score is:{}, best score is: {}'.format(batches + 1, score, self.best_score))
if __name__ == '__main__':
p, r = evaluate(stsb_train)
print('before training, Pearson correlation : {},spearman rank correlation: {}'.format(p, r))
save_path = 'best.weights'
evaluator = Evaluator(save_path=save_path)
model.fit_generator(train_generator.generator(),
epochs=epochs,
steps_per_epoch=len(train_generator),
)
# load best weights
model.load_weights(save_path)
p, r = evaluate(stsb_train)
print('after training, Pearson correlation : {},spearman rank correlation: {}'.format(p, r))