-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathclassification_adabelief.py
134 lines (110 loc) · 3.98 KB
/
classification_adabelief.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
# -*- coding: utf-8 -*-
# @Date : 2020/10/19
# @Author : mingming.xu
# @Email : [email protected]
# @File : classification_adabelief.py
"""
classification use AdaBelief:
bert-3-Adam: 57.9
bert-3-AdaBelief: 58.4
ref: [AdaBelief Optimizer: Adapting Stepsizes by the Belief in Observed Gradients](https://arxiv.org/pdf/2010.07468.pdf)
"""
import json
from toolkit4nlp.backend import keras, K
from toolkit4nlp.tokenizers import Tokenizer
from toolkit4nlp.models import build_transformer_model, Model
from toolkit4nlp.optimizers import AdaBelief
from toolkit4nlp.utils import pad_sequences, DataGenerator
from toolkit4nlp.layers import Input, Lambda, Dense, Layer
num_classes = 119
maxlen = 128
batch_size = 32
# BERT base
config_path = '/home/mingming.xu/pretrain/NLP/chinese_L-12_H-768_A-12/bert_config.json'
checkpoint_path = '/home/mingming.xu/pretrain/NLP/chinese_L-12_H-768_A-12/bert_model.ckpt'
dict_path = '/home/mingming.xu/pretrain/NLP/chinese_L-12_H-768_A-12/vocab.txt'
def load_data(filename):
D = []
with open(filename) as f:
for i, l in enumerate(f):
l = json.loads(l)
text, label = l['sentence'], l['label']
D.append((text, int(label)))
return D
# 加载数据集
train_data = load_data(
'/home/mingming.xu/datasets/NLP/CLUE/iflytek/train.json'
)
valid_data = load_data(
'/home/mingming.xu/datasets/NLP/CLUE/iflytek/dev.json'
)
# 建立分词器
tokenizer = Tokenizer(dict_path, do_lower_case=True)
class data_generator(DataGenerator):
"""数据生成器
"""
def __iter__(self, shuffle=False):
batch_token_ids, batch_segment_ids, batch_labels = [], [], []
for is_end, (text, label) in self.get_sample(shuffle):
token_ids, segment_ids = tokenizer.encode(text, maxlen=maxlen)
batch_token_ids.append(token_ids)
batch_segment_ids.append(segment_ids)
batch_labels.append([label])
if len(batch_token_ids) == self.batch_size or is_end:
batch_token_ids = pad_sequences(batch_token_ids)
batch_segment_ids = pad_sequences(batch_segment_ids)
batch_labels = pad_sequences(batch_labels)
yield [batch_token_ids, batch_segment_ids], batch_labels
batch_token_ids, batch_segment_ids, batch_labels = [], [], []
# 转换数据集
train_generator = data_generator(train_data, batch_size)
valid_generator = data_generator(valid_data, batch_size)
def evaluate(data, model):
total, right = 0., 0.
for x_true, y_true in data:
y_pred = model.predict(x_true).argmax(axis=1)
y_true = y_true[:, 0]
total += len(y_true)
right += (y_true == y_pred).sum()
return right / total
class Evaluator(keras.callbacks.Callback):
def __init__(self, savename):
self.best_val_acc = 0.
self.savename = savename
def on_epoch_end(self, epoch, logs=None):
val_acc = evaluate(valid_generator, self.model)
if val_acc > self.best_val_acc:
self.best_val_acc = val_acc
self.model.save_weights(self.savename)
print(
u'val_acc: %.5f, best_val_acc: %.5f\n' %
(val_acc, self.best_val_acc)
)
# 加载预训练模型(3层)
bert = build_transformer_model(
config_path=config_path,
checkpoint_path=checkpoint_path,
return_keras_model=False,
num_hidden_layers=3,
prefix='Successor-'
)
x = Lambda(lambda x: x[:, 0])(bert.output)
x = Dense(units=num_classes, activation='softmax')(x)
model = Model(bert.inputs, x)
model.compile(
loss='sparse_categorical_crossentropy',
optimizer=AdaBelief(2e-5), # 用足够小的学习率
metrics=['sparse_categorical_accuracy'],
)
model.summary()
if __name__ == '__main__':
# 训练
evaluator = Evaluator('best_model.weights')
model.fit_generator(
train_generator.generator(),
steps_per_epoch=len(train_generator),
epochs=5,
callbacks=[evaluator]
)
else:
model.load_weights('best_model.weights')