forked from hiyouga/LLaMA-Factory
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathload_my_model_v2.py
74 lines (62 loc) · 2.71 KB
/
load_my_model_v2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
def get_layers_from_str(layers_str, total_layers):
if layers_str == 'all':
loop_layers = list(range(total_layers))
else:
layers = layers_str.split(',')
loop_layers = []
for layer in layers:
if '-' in layer:
start, end = map(int, layer.split('-'))
loop_layers.extend(list(range(start, end)))
else:
loop_layers.append(int(layer))
loop_layers = sorted(list(set(loop_layers)))
return loop_layers
def load_loop_class(modeling_code_path, model_type):
import sys
sys.path.append(modeling_code_path)
if model_type == 'phi-2':
module_name = 'modeling_local_loop_phi_v2'
config_class_name = 'LocalLoopPhiConfig'
model_class_name = 'LocalLoopPhiForCausalLM'
load_func_name = 'from_base'
else:
raise ValueError(f"Model type {model_type} not supported.")
module = __import__(module_name)
config_class = getattr(module, config_class_name)
model_class = getattr(module, model_class_name)
load_func = getattr(model_class, load_func_name)
auto_map = {
"AutoConfig": f"{module_name}.{config_class_name}",
"AutoModel": f"{module_name}.{model_class_name}",
"AutoModelForCausalLM": f"{module_name}.{model_class_name}",
}
return config_class, model_class, load_func, auto_map, module_name
def load_custom_model():
import os
# load MODEL_PATH, PORJECTION_TYPE, LOOP_LAYERS, LOOP_TIMES, FIX_PROJECTION, PROJECTION_INIT from os.environ
model_path = os.getenv("MODEL_PATH")
update_style = os.getenv("UPDATE_STYLE")
loop_layers = os.getenv("LOOP_LAYERS")
loop_times = os.getenv("LOOP_TIMES")
modeling_code_path = "/cephfs/xukangping/code/experiments/local_loop/models"
model_type = "phi-2"
config_class, model_class, from_model, auto_map, module_name = load_loop_class(modeling_code_path, model_type)
# load base config from model_path
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoConfig
base_config = AutoConfig.from_pretrained(model_path)
base_model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True, torch_dtype="auto")
loop_config = config_class(
update_style=update_style,
loop_layers=get_layers_from_str(loop_layers, base_config.num_hidden_layers),
loop_times=int(loop_times),
**base_config.to_dict()
)
loop_config_dict = loop_config.to_dict()
loop_config_dict.update({
"auto_map": auto_map,
})
loop_config = config_class.from_dict(loop_config_dict)
# load model
loop_model = from_model(base_model, loop_config).to(base_model.dtype)
return loop_model, loop_config