-
-
Notifications
You must be signed in to change notification settings - Fork 13.4k
/
base_provider.py
257 lines (218 loc) · 8.47 KB
/
base_provider.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
from __future__ import annotations
import sys
import asyncio
from asyncio import AbstractEventLoop
from concurrent.futures import ThreadPoolExecutor
from abc import abstractmethod
from inspect import signature, Parameter
from ..typing import CreateResult, AsyncResult, Messages
from .types import BaseProvider
from .asyncio import get_running_loop, to_sync_generator
from .response import FinishReason, BaseConversation, SynthesizeData
from ..errors import ModelNotSupportedError
from .. import debug
# Set Windows event loop policy for better compatibility with asyncio and curl_cffi
if sys.platform == 'win32':
try:
from curl_cffi import aio
if not hasattr(aio, "_get_selector"):
if isinstance(asyncio.get_event_loop_policy(), asyncio.WindowsProactorEventLoopPolicy):
asyncio.set_event_loop_policy(asyncio.WindowsSelectorEventLoopPolicy())
except ImportError:
pass
class AbstractProvider(BaseProvider):
"""
Abstract class for providing asynchronous functionality to derived classes.
"""
@classmethod
async def create_async(
cls,
model: str,
messages: Messages,
*,
loop: AbstractEventLoop = None,
executor: ThreadPoolExecutor = None,
**kwargs
) -> str:
"""
Asynchronously creates a result based on the given model and messages.
Args:
cls (type): The class on which this method is called.
model (str): The model to use for creation.
messages (Messages): The messages to process.
loop (AbstractEventLoop, optional): The event loop to use. Defaults to None.
executor (ThreadPoolExecutor, optional): The executor for running async tasks. Defaults to None.
**kwargs: Additional keyword arguments.
Returns:
str: The created result as a string.
"""
loop = loop or asyncio.get_running_loop()
def create_func() -> str:
return "".join(cls.create_completion(model, messages, False, **kwargs))
return await asyncio.wait_for(
loop.run_in_executor(executor, create_func),
timeout=kwargs.get("timeout")
)
@classmethod
def get_parameters(cls) -> dict[str, Parameter]:
return {name: parameter for name, parameter in signature(
cls.create_async_generator if issubclass(cls, AsyncGeneratorProvider) else
cls.create_async if issubclass(cls, AsyncProvider) else
cls.create_completion
).parameters.items() if name not in ["kwargs", "model", "messages"]
and (name != "stream" or cls.supports_stream)}
@classmethod
@property
def params(cls) -> str:
"""
Returns the parameters supported by the provider.
Args:
cls (type): The class on which this property is called.
Returns:
str: A string listing the supported parameters.
"""
def get_type_name(annotation: type) -> str:
return annotation.__name__ if hasattr(annotation, "__name__") else str(annotation)
args = ""
for name, param in cls.get_parameters().items():
args += f"\n {name}"
args += f": {get_type_name(param.annotation)}" if param.annotation is not Parameter.empty else ""
default_value = f'"{param.default}"' if isinstance(param.default, str) else param.default
args += f" = {default_value}" if param.default is not Parameter.empty else ""
args += ","
return f"g4f.Provider.{cls.__name__} supports: ({args}\n)"
class AsyncProvider(AbstractProvider):
"""
Provides asynchronous functionality for creating completions.
"""
@classmethod
def create_completion(
cls,
model: str,
messages: Messages,
stream: bool = False,
**kwargs
) -> CreateResult:
"""
Creates a completion result synchronously.
Args:
cls (type): The class on which this method is called.
model (str): The model to use for creation.
messages (Messages): The messages to process.
stream (bool): Indicates whether to stream the results. Defaults to False.
loop (AbstractEventLoop, optional): The event loop to use. Defaults to None.
**kwargs: Additional keyword arguments.
Returns:
CreateResult: The result of the completion creation.
"""
get_running_loop(check_nested=False)
yield asyncio.run(cls.create_async(model, messages, **kwargs))
@staticmethod
@abstractmethod
async def create_async(
model: str,
messages: Messages,
**kwargs
) -> str:
"""
Abstract method for creating asynchronous results.
Args:
model (str): The model to use for creation.
messages (Messages): The messages to process.
**kwargs: Additional keyword arguments.
Raises:
NotImplementedError: If this method is not overridden in derived classes.
Returns:
str: The created result as a string.
"""
raise NotImplementedError()
class AsyncGeneratorProvider(AsyncProvider):
"""
Provides asynchronous generator functionality for streaming results.
"""
supports_stream = True
@classmethod
def create_completion(
cls,
model: str,
messages: Messages,
stream: bool = True,
**kwargs
) -> CreateResult:
"""
Creates a streaming completion result synchronously.
Args:
cls (type): The class on which this method is called.
model (str): The model to use for creation.
messages (Messages): The messages to process.
stream (bool): Indicates whether to stream the results. Defaults to True.
loop (AbstractEventLoop, optional): The event loop to use. Defaults to None.
**kwargs: Additional keyword arguments.
Returns:
CreateResult: The result of the streaming completion creation.
"""
return to_sync_generator(
cls.create_async_generator(model, messages, stream=stream, **kwargs)
)
@classmethod
async def create_async(
cls,
model: str,
messages: Messages,
**kwargs
) -> str:
"""
Asynchronously creates a result from a generator.
Args:
cls (type): The class on which this method is called.
model (str): The model to use for creation.
messages (Messages): The messages to process.
**kwargs: Additional keyword arguments.
Returns:
str: The created result as a string.
"""
return "".join([
str(chunk) async for chunk in cls.create_async_generator(model, messages, stream=False, **kwargs)
if not isinstance(chunk, (Exception, FinishReason, BaseConversation, SynthesizeData))
])
@staticmethod
@abstractmethod
async def create_async_generator(
model: str,
messages: Messages,
stream: bool = True,
**kwargs
) -> AsyncResult:
"""
Abstract method for creating an asynchronous generator.
Args:
model (str): The model to use for creation.
messages (Messages): The messages to process.
stream (bool): Indicates whether to stream the results. Defaults to True.
**kwargs: Additional keyword arguments.
Raises:
NotImplementedError: If this method is not overridden in derived classes.
Returns:
AsyncResult: An asynchronous generator yielding results.
"""
raise NotImplementedError()
class ProviderModelMixin:
default_model: str = None
models: list[str] = []
model_aliases: dict[str, str] = {}
image_models: list = None
@classmethod
def get_models(cls) -> list[str]:
if not cls.models and cls.default_model is not None:
return [cls.default_model]
return cls.models
@classmethod
def get_model(cls, model: str) -> str:
if not model and cls.default_model is not None:
model = cls.default_model
elif model in cls.model_aliases:
model = cls.model_aliases[model]
elif model not in cls.get_models() and cls.models:
raise ModelNotSupportedError(f"Model is not supported: {model} in: {cls.__name__}")
debug.last_model = model
return model